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1 RESET Test

1.1 Theory

The RESET test is used to test whether your model is misspecified or not. The logic
is as follows. Suppose we have correctly specified the model using only linear variables.
Hence the zero conditional mean condition is satisfied, i.e. E[ε|x2, . . . , xk] = 0, and we can
conclude that there are no relevant omitted variables. In particular, we have not omitted
any relevant quadratic functions or interactions of the regressors, for instance x2

4 or x2x3.
Hence if we add some nonlinear aspect to the model, then the corresponding coefficients
should be statistically indistinguishable from zero. If not, then we’re using the wrong
model.

Let’s be more explicit. We originally use the model

y = β1 + β2x2 + . . . + βkxk + ε. (1)

We do OLS in the typical fashion and generate fitted values ŷ. It is important at this
juncture to recognize that ŷ is just a function of x2, . . . , xk. Accordingly, ŷ2 and ŷ3 and so
forth are just nonlinear function of x2, . . . , xk. (Squared and cubed terms are most common
and useful, so I will stop at the third power.) For instance if you have just two regressors,
then ŷ = b1 + b2x2 + b3x3, so ŷ2 = (b1 + b2x2 + b3x3)

2 has quite a few nonlinear terms
once you expand it.

The takeaway is that by putting ŷ2 and ŷ3 into the regression, we’re including a host
of nonlinear terms. Doing so means running auxiliary regression of form

y = β1 + β2x2 + . . . + βkxk + α1ŷ2 + α2ŷ3 + ε. (2)

If the nonlinearities don’t matter, then we expect α1 and α2 to be statistically indistinguish-
able from zero, and can conclude that our model in equation (1) without any nonlinear
terms is not complete garbage. The specific test is of the form

H0 : α1 = α2 = 0, (all missing nonlinear terms are irrelevant)

H1 : at least one of α1, α2 6= 0. (some missing nonlinear terms are relevant)
(3)

So it’s a test of joint significance. We’ve seen this before. The overall regression equation
(2) has k + 2 variables (including the intercept). The restricted regression is simply the
original regression with k variables because we make two q = 2 restrictions in H0. Hence
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we use test statistic

F ≡ (RSSr − RSSu)/(2)
RSSu/(n− k− 2)

∼ F(2, n− k− 2). (4)

If the F-statistic is big enough, then we conclude that the model is misspecified in some
way because it’s saying something important is in ŷ2 or ŷ3. But we don’t know what that
important something is: the big downside to the RESET test is that it doesn’t tell us how
to proceed after it tells us that our model is junk.

1.2 Example

Load up wages.csv again. Let’s see if the model

wage = β1 + β2educ + β3 IQ + β4sibs + β5brthord + ε

is misspecified. We run OLS on the preceding equation, we generate variables ŷ2 and ŷ3,
and we throw them into the auxiliary regression

wage = β1 + β2educ + β3 IQ + β4sibs + β5brthord + α1ŷ2 + α2ŷ3 + ε.

Then we test whether α1 and α2 are jointly significant or not.
There are n = 852 observations. In the big model there are k + 2 = 7 estimates be-

ing made. In the restricted version, there are k = 5 estimates being made and q = 2
restrictions. Hence we find

F ≡ (RSSr − RSSu)/(2)
RSSu/(852− 7)

∼ F(2, 845).

I’m not going to grind out each RSS, but suffice it to say that R gives F = 0.6352. This
gives a p-value of pf(0.6352, 2, 845, lower.tail=FALSE)= 0.5301. Hence we cannot
reject the null at conventional levels and thus we have insufficient evidence of model
misspecification. Hooray, the model isn’t total garbage!

We can also do this by using the resettest() function from the lmtest package. By
default it will also do second and third powers of ŷ. The R code I’ve used follows.
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1 library("stargazer")
2 library("lmtest")
3
4 wages <- read.csv("wages.csv")
5
6 ### run original regression
7 ols1 <- lm(wage ∼ educ + iq + sibs + brthord , data = wages)
8
9 wages$yhatsq = ols1$fitted.values ^2 ### fitted squared

10 wages$yhatcu = ols1$fitted.values ^3 ### fitted cubed
11
12 ### run RESET regression
13 RESETreg <- lm(wage ∼ educ + iq + sibs + brthord
14 + yhatsq + yhatcu , data = wages)
15
16 RESETRSSu = sum(RESETreg$residuals ^2) ### unrestricted RSS
17 RESETRSSr = sum(ols1$residuals ^2) ### restricted RSS
18
19 ### calculate F statistic and p-value
20 F = (( RESETRSSr - RESETRSSu)/2) / (RESETRSSu/845)
21 pv = pf(F, 2, 845, lower.tail=FALSE)
22
23 ### let R do the restriction testing for you
24 anova(RESETreg , ols1)
25
26 ### let R do the whole damn thing for you
27 resettest(ols1 , power = 2:4)

2 Jarque-Bera Normality Test

2.1 Theory

One of our OLS assumptions, especially vital for small sample sizes, is that disturbances
have normal distribution. That’s a fairly strong assumption, so it warrants testing. The
Jarque-Bera normality test considers whether disturbances have zero skewness and zero
excess kurtosis, as we should have with any normal distribution.

Hence the test is of form

H0 : disturbances are normal,

H1 : disturbances are not normal,
(5)

where we use the test statistic

JB = n

 ŝkew
2

6
+

(̂kurt− 3)2

24

 ∼ χ2(2) (6)

if n is large enough. Two degrees of freedom reflects the fact that we are testing by using
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estimates for two variables, skewness and kurtosis. If the null hypothesis is true, then
JB should be very close to zero. Therefore if JB is too large, then we reject the null and
conclude that disturbances are not normal.

2.2 Example

Hey guess what, load up wages.csv. We’re going to see if the model

wage = β1 + β2educ + β3 IQ + β4sibs + β5brthord + ε

has normally distributed disturbances or not. We find sample skewness of about 1.090,
sample kurtosis of about 6.203, the sample size is n = 852, and therefore we have test
statistic

JB = 852
[

1.092

6
+

(6.203− 3)2

24

]
≈ 532.9.

This has a p-value of pchisq(532.9, 2, lower.tail=FALSE)≈ 0, so we reject the hell out
of the null hypothesis; the residuals are almost certainly not normally distributed.

We can also defer to function jarque.bera.test() from the tseries package, which
is shown in the code below.

1 library("stargazer")
2 library("moments")
3 library("tseries")
4
5 wages <- read.csv("wages.csv")
6
7 ols1 <- lm(wage ∼ educ + IQ + sibs + brthord , data = wages)
8
9 s = skewness(ols1$residuals) ### skew of residuals

10 k = kurtosis(ols1$residuals) ### kurtosis of residuals
11 JB = 852*(s^2/6 + (k-3)^2/24) ### test statistic
12
13 pv = pchisq(JB, 2, lower.tail=FALSE) ### p-value
14
15 ### let R do it for you
16 jarque.bera.test(ols1$residuals)

3 Breusch-Pagan Test for Heteroskedasticity

Homoskedasticity is a pretty strong condition, so it is definitely something we should
check for before we just go around assuming it. To that end, we will use the Breusch-
Pagan test, described as follows. (There’s a lot to take in; prepare yourself.)

4

www.wimivo.com


ECN 102, Summer 2020 - OLS Tests www.wimivo.com

3.1 Theory

We will maintain OLS assumptions 1-2 so that estimates are unbiased, and also note that
the Breusch-Pagan test requires normality of disturbances. Our null hypothesis is that of
homoskedasticity and the alternative heteroskedasticity, written explicitly as

H0 : Var(ε|x2, . . . , xk) is constant,

H1 : Var(ε|x2, . . . , xk) is not constant.
(7)

Keep in mind the following intuition throughout: homoskedasticity means that the vari-
ance of the disturbance does not depend on x2, . . . , xk (and is always equal to σ2

ε ), whereas
heteroskedasticity means the variance of the disburance depends on x2, . . . , xk.

One useful property of variance is we can express it as Var(X) = E[X2]− E[X]2 after
a little bit of algebra.1 If we condition ε on our regressors x2, . . . , xk, then we can use this
result to write

Var(εi|x2, . . . , xk) = E[ε2
i |x2, . . . , xk]− E[εi|x2, . . . , xk]

2, (8)

and furthermore notice that E[εi|x2, . . . , xk]
2 = 0 from OLS assumption 2. This allows us

to reformulate the test as

H0 : E
[
ε2|x2, . . . , xk

]
is constant,

H1 : E
[
ε2|x2, . . . , xk

]
is not constant.

(9)

This formulation is useful because under OLS assumptions 1-2, we have the conditional
expectation interpretation of a regression. Specifically (and using η to denote a distur-
bance because ε has already been used for the original regression),

ε2
i = α1 + α2x2 + . . . + αkxk + η (10)

=⇒ E
[
ε2

i |x2, . . . , xk

]
= α1 + α2x2 + . . . + αkxk.

Great, we now have an explicit formula for Var(εi|x2, . . . , xk), that is,

Var(εi|x2, . . . , xk) = α1 + α2x2 + . . . + αkxk, (11)

1Expand the right-hand side of Var(X) ≡ E
[
(X− E[X])2

]
and the result follows without too much fuss.
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which is the equation we will use for testing.
If homoskedasticity holds, then the conditional variance should just be a constant that

does not depend on x2, . . . , xk. That is, when α2, . . . , αk are all zero, we have homoskedas-
ticity because

Var(εi|x2, . . . , xk) = α1,

which makes it clear that α1 = σ2
ε . On the other hand, if some of α2, . . . , αk are not zero,

then we have heteroskedasticity because then the variance of the disturbance does de-
pend on those regressors.

So we can reformulate the test again as the overall significance test of the regression in
equation (10), specifically,

H0 : α2 = 0, . . . , αk = 0, (homoskedasticity)

H1 : at least one of α2, . . . , αk 6= 0. (heteroskedasticity)
(12)

Problem is, εi is some unknown disturbance and we don’t know population parameters
α2, . . . , αk. We have to use ei = yi − ŷi instead as an estimate of εi. This doesn’t change
much: we now consider the model

e2
i = α1 + α2x2 + . . . + αkxk + η (13)

=⇒ E
[
e2

i |x2, . . . , xk

]
= a1 + a2x2 + . . . + akxk,

where a2, . . . , ak are estimates of α2, . . . , αk that come from a typical OLS regression. Be-
cause a2, . . . , ak are estimates, we have to infer whether they are zero or not using the
overall significance F-test, as described previously.

3.2 Heteroskedasticity-Robust Standard Errors

If we conclude that disturbances are heteroskedastic, then the default standard errors and
F-statistics are invalid. We have to intead use heteroskedasticity-robust standard errors
and F-statistics. Calculating these requires matrix algebra and “sandwich estimators,”
which are mathematically beyond the scope of this course. Having R do it all for us,
however, is not beyond the scope of this course.

Supposing you have run a regression called ols1, you can see the heteroskedasticity-
robust standard errors, t-statistics, and p-values; as well as the heteroskedasticity-robust
F-statistic; using the following commands, respectively. They will typically be at least a
little different from the default calculations and will sometimes lead to different conclu-
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sions about whether to reject the null or not.

1 coeftest(ols1 , vcov = vcovHC(ols1 , type = "HC0"))
2 waldtest(ols1 , vcov = vcovHC(ols1 , type = "HC0"))

3.3 Algorithm

Without further ado, here is the algorithm for the test.

Step 1. Estimate your model,

y = β1 + β2x2 + . . . + βkxk + ε,

using the typical OLS rigmarole.

Step 2. Calculate the squared residuals e2
i for each i.

Step 3. Regress e2 on each regressor,

e2 = α1 + α2x2 + . . . + αkxk + η,

and make note of the R-squared of this regression, call it R2
e . This is called an

auxiliary regression because we only do it to help analyze the primary regres-
sion of step 1.

Step 4. Calculate the F-statistic for the overall significance of the auxiliary regression,

F ≡ R2
e /(k− 1)

(1− R2
e )/(n− k)

∼ F(k− 1, n− k),

from which you calculate the p-value.

Step 5. Compare the p-value to your chosen level. If the p-value is smaller than your
level, then we conclude that some combination of the αj parameters have sig-
nificant effect on e2

i . In other words, e2
i depends on the values of x2, . . . , xk,

and therefore we infer that Var(εi|x2, . . . xk) does as well, so we can reject ho-
moskedasticity.
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3.4 Example

Load up wages.csv again. We want to see if the regression

wage = β1 + β2educ + β3 IQ + β4sibs + β5brthord + ε

has homoskedastic disturbances or not. Doing some work in R gives us R2
e = 0.0211.

There are n = 852 observations and k = 5 estimates. Hence we look at the F-statistic

F =
0.0211/(4)

(1− 0.0211)/(847)
≈ 4.5601.

This gives p-value of pf(4.5601, 4, 847, lower.tail=FALSE)= 0.0012. Hence we con-
clude at conventional levels that the disturbance depends on the regressors, and hence
we reject homoskedasticity. You could also run stargazer() which will give you the
F-statistic and indicate significance.2

Because disturbances are heteroskedastic, we should calculate the heteroskedasticity-
robust standard errors and F-statistic. Doing so yields a difference in all standard errors
as well as the F-statistic, but no differences in conclusions because no p-values cross any
thresholds of interest.

The R code is show below.

2We can use bptest() from the lmtest package, but it uses a χ2 test instead of an F-test. For n − k
sufficiently large, it is approximately true that χ2(q)/q = F(q, ∞). Don’t use this for the homework.
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1 library("stargazer")
2 library("lmtest")
3 library("sandwich")
4
5 wages <- read.csv("wages.csv")
6
7 ### unrestricted regression
8 ols1 = lm(wage ∼ educ + IQ + sibs + brthord , data=wages)
9

10 esquared = ols1$residuals ^2
11
12 ### regress squared residuals
13 auxreg = lm(esquared ∼ educ + IQ + sibs + brthord , data=wages)
14
15 ### calculate F-statistic and p-value
16 R2esquared = summary(auxreg)$r.squared
17 F = (R2esquared/(4)) / ((1 - R2esquared)/(847))
18 pv = pf(F, 4, 847, lower.tail=FALSE)
19
20 ### be lazy and let R test significance for you
21 stargazer(auxreg , type = "text")
22
23 ### compare default to robust calculations
24 summary(ols1)
25 coeftest(ols1 , vcov = vcovHC(ols1 , type = "HC0"))
26 waldtest(ols1 , vcov = vcovHC(ols1 , type = "HC0"))
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