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1 Multiple Regression

1.1 Motivation: Omitted Variables

Suppose you are interested in understanding how wages are related to years of education,
so you look at the model

wage = β1 + β2educ + η.

For now, think of η as being the typical disturbance term. The interpretation is that we
want to explain wage with educ and “other stuff” captured in η.

Now ask yourself: of the “other stuff” in η that explains wage, is any of that also
correlated with education? I am strongly inclined to say “yes.” Take IQ for example.
I would expect a higher IQ to explain a higher wage; but I also suspect that there is a
correlation between IQ and years of education (e.g. college students have a higher IQ
than the general public). So when we consider someone with more education, we are
also likely considering someone with a higher IQ. This is problematic because β2 in the
regression above is implicitly telling us the effect of education and of IQ on wage, and
therefore β2 does not isolate the effect of education on wage.

In other words, we are failing to hold IQ constant when considering different levels of educa-
tion, and consequently we are getting both the effect of higher education and the effect of
higher IQ in our estimate of β2. This relationship is illustrated in Figure 1.

That we fail to include a variable that is correlated with both the independent and
dependent variable means our estimate for β2 will be biased, that is, E[b2] 6= β2. We refer
to this as omitted variable bias. Technically this is consequence of violating classical OLS
assumption 2 (see below), i.e. zero conditional mean, because E[v|educ] 6= 0.

So how do we progress? Simple: just stick IQ into the regression as well. Our im-
proved model is thus of the form

wage = β1 + β2educ + β3 IQ + ε.

Now when we take the partial derivative with respect to education, we are explicitly
holding IQ constant by definition of a partial derivative. Therefore

∂wage
∂education

= β2

gives the relationship between education and wage where IQ is being controlled for.
Of course, there are probably other omitted variables as well. In a laboratory exper-

iment, ideally all of these factors can be controlled for if the experiment is properly de-
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signed. But we are limited to the data we observe, which may or may not contain all
relevant variables. (Probably won’t.) Thus, even if we control for a bunch of variables,
we still can never be certain that we have fully determined the direct relationship between
any x and y.

more education higher wage

higher IQ

FIGURE 1: More education is correlated with higher wage, but it’s also correlated with higher IQ.
If we do not hold IQ constant, then we are not accurately characterizing the relationship between
education and wage.

On the other hand, if an omitted regressor is correlated with y but not with x, then
omitting it is fine. The omitted regressor is still part of ε because it is something that
explains y but isn’t in the regression. But because it isn’t correlated with x, the zero con-
ditional mean assumption E[ε|x] = 0 still holds, and therefore estimates are still unbiased
and consistent.

For instance, consider again wage = β1 + β2educ + η. Tall people on average earn a
higher wage than short people, so height is relevant in explaining wage: it’s part of v, one
of the “other things” that explain wage. But tall people are not on average more educated
than short people, so height is not correlated with educ. In this case there is no omitted
variable bias from omitting height: changes in education do not mean we are implicitly
considering changes in height.

To so summarize:

• If a variable is relevant (it explains y) and is correlated with any included regressors,
then it is a confounding variable: omitting it from the regression violates OLS assump-
tion 2 and estimates suffer from the omitted variable bias and are inconsistent.

• If a variable is relevant (it explains y) and is not correlated with any included re-
gressors, then omitting it from the regression is fine: estimates are unbiased and
consistent.
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1.2 Example: Wages

Import wages.csv into R. It contains, you guessed it, information about (monthly) wages,
education, IQ, and some other stuff. If we regress wages on education, the result is

ˆwage = 139.12 + 61.59× educ.

This implies that someone with one more year of education would be expected to have a
higher monthly wage by $61.59. But as discussed earlier, this is implicitly including the
effect of a higher IQ, since the model above fails to control for IQ. We control for IQ by
regressing wage on both education and IQ. By doing so, we expect the effect of education
to be lower because now the effect isn’t being exaggerated by a higher IQ. Indeed,

ˆwage = −131.67 + 44.27educ + 4.95IQ.

So as predicted, the estimated effect of education on wage drops from 61.59 to 44.27.
Before controlling for IQ, our estimate of β2 had an upward bias.

The relevant R commands and output are shown in Figure 2 on the next page.

2 Classical OLS Assumptions

For OLS to “work” by default, we need the following conditions to hold given dependent
variable y and the set of regressors x2, x3, . . . , xk. Note that we have k − 1 regressors
because we started at x2. Therefore we will be estimating k things because we are also
estimating the intercept coefficient. Hence we will have n− k degrees of freedom when
we do inference.

(a) CNLRM1: Correct Linear Model. The true model is linear and correctly specified
as

y = β1 + β2x2 + β3x3 + . . . + βkxk + ε. (1)

Intuition: if we estimate a population model that’s actually of a different form, then
our estimates are probably garbage. (Keep in mind that any xj might be nonlinear.)

(b) CNLRM2: Zero Conditional Mean. The disturbance term has zero mean condi-
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1 wages <- read.csv("wages.csv")
2 library(stargazer)
3
4 ols1 = lm(wage ∼ educ , data = wages)
5 stargazer(ols1 , type = "text")
6
7 ols2 = lm(wage ∼ educ + iq, data = wages)
8 stargazer(ols2 , type = "text")

> ols1 = lm(wage ∼ educ , data = wages)
> stargazer(ols1 , type = "text")

===============================================
Dependent variable:

---------------------------
wage

-----------------------------------------------
educ 61.586***

(5.931)

Constant 139.117*
(81.160)

-----------------------------------------------
Observations 852
R2 0.113
Adjusted R2 0.112
Residual Std. Error 380.658 (df = 850)
F Statistic 107.817*** (df = 1; 850)
===============================================
Note: *p <0.1; **p <0.05; ***p <0.01

> ols2 = lm(wage ∼ educ + iq , data = wages)
> stargazer(ols2 , type = "text")

===============================================
Dependent variable:

---------------------------
wage

-----------------------------------------------
educ 44.268***

(6.852)

iq 4.954***
(1.019)

Constant -131.671
(97.555)

-----------------------------------------------
Observations 852
R2 0.137
Adjusted R2 0.135
Residual Std. Error 375.686 (df = 849)
F Statistic 67.168*** (df = 2; 849)
===============================================
Note: *p <0.1; **p <0.05; ***p <0.01

FIGURE 2: When IQ is included in the regression (and therefore controlled for), we find that edu-
cation explains less about wage.
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tional upon the regressors, that is,

E[ε|x2, . . . , xk] = 0. (2)

Intuition: think of the disturbance term as being the mistake of the model. If we
expect the mistake to be non-zero on average, then our model is probably garbage.
This condition is equivalent to saying that u is uncorrelated with all of the regres-
sors.

More technically, it allows us to go from

y = β1 + β2x2 + β3x3 + . . . + βkxk + ε

E[y|x2, . . . , xk] = β1 + β2x2 + β3x3 + . . . + βkxk, (3)

the latter being the interpretation of the regression line itself (i.e. the conditional
expectation of y given our regressors).

(c) CNLRM3: Homoskedasticity. The conditional variance of the disturbance term is
constant and finite, that is,

Var(ε|x2, . . . , xk) = σ2
ε < ∞. (4)

There isn’t much economic intuition here; it’s mostly a technical assumption, albeit
an unrealistic one, that offers a convenient starting point for rigorous analysis. In
practice it is violated frequently, which is not difficult to deal with (as explained
later). This condition is illustrated in Figure 3.

(d) CNLRM4: Independent Errors. Errors for different observations are statistically
independent, that is,

εi ⊥ εj whenever i 6= j.

Intuition: if model disturbances are correlated, then there is some underlying pat-
tern that we are overlooking, so our results are probably garbage.

As an example of a violation, suppose we look at ECN 102 final exam scores in all of
2017; that means we’re looking at ECN 102 final exam scores for three different pro-
fessors. Problem is, different professors write exams of differing difficulty. Hence
we would expect a lenient professor’s students to do better than the regression pre-
dicts (so we’d have correlation among observations with positive ε), and we expect
a challenging professor’s students to do worse than what the regression predicts
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FIGURE 3: The figure on the left is an example of heteroskedasticity; the right an example of
homoskedasticity. The left is heteroskedastic because the variation of disturbances around the
regression line gets bigger as x increases.

(so we’d have correlation among observations with negative ε). This is called clus-
tering because each professor’s final exam forms a cluster of students. (Note that
students in different clusters, however, are independent from each other.)

(e) CNLRM5: Normality of Errors. Errors are normally distributed with variance σ2,
i.e.,

εi ∼ N
(

0, σ2
)

. (5)

This is another technical assumption for “nice” results, explained below. In practice
it can be weakened, but it is necessary for inference on small sample sizes.

(f) CNLRM6: No Perfect Multicollinearity. There exists no exact linear relationship
between explanatory samples. Furthermore, the number of observations must be
greater than the number of explanatory variables (plus constant term), i.e. n ≥ k.

Intuition: if there is such a perfect relationship between two or more regressors, then
we can’t “untangle” the effect of each regressor. In other words, it’s like including
the same regressor twice, and that redundancy breaks the OLS solution technique.

3 Implications of OLS Assumptions

You can see that most of these assumptions are close analogues to the simple regression,
the exception being CNLRM6. You will not be surprised then to learn that the implica-
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tions are largely the same as well.

• Assumptions CNLRM1-2 imply that OLS estimates are unbiased, so that E[bj] = β j.

• Assumptions CNLRM1-4 imply that OLS estimates are consistent, so that bj
p→ β j

as n → ∞. Furthermore, assumptions CNLRM1-4 imply that OLS is the best linear
unbiased estimator, or BLUE. When we say “best,” we mean they have the smallest
standard errors and hence precision of inference is the most accurate.

• Adding CNLRM5 implies that OLS is the best unbiased estimator, or BUE, even
when compared to nonlinear methods. Furthermore, it implies that

t ≡
bj − β j

se(bj)
∼ T(n− k)

is exactly true for any β j, even for small samples; without CNLRM5 it is only ap-
proximately true if the sample size is large enough. (Therefore CNLRM5 is required
for inference on small samples.) We are estimating k things, which is why we have
n− k degrees of freedom.

• Assumption CNLRM6 is always required; in the presence of perfect multicollinear-
ity, the regression cannot be executed. Accordingly, this is usually just implicitly as-
sumed because otherwise it’s game over and we should just give up and go home.
(Actually, there’s usually a very easy fix for it, shown in a bit.)

4 Including Irrelevant Regressors

Suppose we accidentally include some regressor x` that does not explain y at all, thereby
making it irrelevant. Well, because it’s irrelevant, its coefficient will be β` = 0, and there-
fore the population regressions

y = β1 + β2x2 + . . . + βkxk + ε,

y = β1 + β2x2 + . . . + βkxk + β`x` + ε,

are actually identical. So nothing is violated by including the irrelevant regressor: the
results are still unbiased and consistent, provided OLS assumptions 1 and 2 hold for
everything else. The problem is that OLS still has to try to estimate β` if x` is included,
which is just adding noise to the estimation process. This means the regression will be
less precise (i.e. higher standard errors). But you’re usually better off with less precise
estimates than biased ones, so most researchers err on the side of including regressors
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that might be irrelevant.

5 Multiple Regression Inference

Under CNLRM1-4, the t-statistic regarding regressor xj is given by

t =
bj − β j

se(bj)
, (6)

and it is drawn from an approximate T(n− k) distribution.Inference proceeds in the usual
way. There is no rule of thumb for how large n needs to be for the approximation to be
adequate. If CNLRM5 holds, then t is drawn from exact T(n− k) distribution.

If either CNLRM3 or CNLRM4 fail, then the typical standard errors are not valid. We
can oftentimes use one of the following alternatives, however.

• use heteroskedasticity-robust standard errors if only CNLRM3 fails

• use cluster-robust standard errors if CNLRM4 alone fails because of suspected clus-
tering in variable x

• use heteroskedasticity and autocorrelation-consistent (HAC) standard errors if us-
ing time series data.

We will have tests for these, but hold onto that thought for another day.

6 Coefficients of Determination

6.1 Overall Significance

When we did a bivariate regression with just one regressor, we asked: does x actually
explain anything about y? In other words, we tested H0 : R2 = 0 against H1 : R2 > 0
using an F-test.

But now we have multiple regressors, all of which contribute to explanatory power of
the model. Which is to say, when we test H0 : R2 = 0 against H1 : R2 > 0, we’re actually
testing the combined explanatory power of all regressors in the model. This is called a test of
overall significance: we want to determine whether our entire suite of regressors jointly
explain something, anything, about y.

Let’s be a bit more concrete. Suppose the regression is y = β1 + β2x2 + β3x3 + β4x4 + ε.
We want to test whether the combined explanatory power of x2 and x3 and x4 is zero or
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non-zero. This test of overall significance has hypotheses

H0 : β2 = β3 = β4 = 0, (H0 : R2 = 0)

H1 : at least one of β2, β3, β4 6= 0. (H1 : R2 > 0)

Ergo if we reject the null hypothesis, then we conclude that the regression is significant
overall: the combination of regressors has at least some explanatory power.

The good news is, we use the same F-statistic as before, given by

F ≡ R2/(k− 1)
(1− R2)/(n− k)

∼ F(k− 1, n− k), (7)

where k is the number of coefficients being estimated. In this example, k = 4 because
the model estimates β1 through β4. Do note that this F-statistic is only valid when dis-
turbances are homoskedastic (i.e. when CNLRM3 holds); otherwise we’ll have to use a
heteroskedasticity-robust version, which is more difficult than anything we’d calculate in
this class (it requires matrix algebra).

6.2 Adjusted R-Squared

A problem with the default R-squared formula is that it always increases when you add an
additional explanatory variable—even if that explanatory variable is totally irrelevant—
due to statistical noise. This is not a desirable property: you don’t want to use a measure-
ment that gives an impression of having additional explanatory power when you add a
variable that doesn’t actually explain anything.

This is where the adjusted R-squared, denoted R2, comes into play. It adds a “penalty”
every time an additional regressor is added. If the increase in R2 is larger than the penalty,
then R2 will increase and we suspect that the explanatory power of the model has im-
proved. If the penalty is larger than the increase in R2, then R2 will decrease and we
suspect that the explanatory power of the model has not improved and therefore the new
regressor should probably be omitted. (We will test this more formally later.)

The formula for adjusted R-squared is given by

R2
= 1− RSS

TSS
(n− 1)
(n− k)

= 1− s2
e

s2
y

, (8)
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although a more intuitive formulation is

R2
= R2 − k− 1

n− k
(1− R2), (9)

where the second term is the penalty term. If a new regressor is added, then R2 will go
up, but so will the penalty term (k− 1)/(n− k). Whichever change is larger determines
whether R2 goes up or down overall.

7 Dummy Variables

7.1 Definition of Dummy Variable

We might be interested in seeing how different categories affect the dependent variable.
For instance, we might want to see if someone working in an urban environment earns
more than someone working elsewhere. To analyze, we construct a dummy variable that
is equal to either zero or one. An urban worker would have value urban = 1, and a non-
urban worker would have value urban = 0. Accordingly, we would run the regression

wage = β1 + β2educ + β3 IQ + β4urban + ε.

The coefficient β4, then, would tell you the expected difference in monthly wage for an
urban worker compared to a non-urban worker. Another way of thinking about it is, β4

captures the expected change in wage if a worker moves from a non-urban environment
to an urban environment, that is, if urban changes from 0 to 1.

7.2 Dummy Variable Trap

Notice in the preceding example that there are two categories, but only one dummy vari-
able. In general, if you have m categories, then you must include exactly m− 1 dummy
variables; the category you omit is called the reference category. Including dummy vari-
ables for all categories results in the dummy variable trap, which is a source of perfect
multicollinearity that breaks OLS estimation. So always use one fewer dummy than there
are categories (or drop the intercept; this is less common).

Here’s a silly example to illustrate why things go wrong. People become really loyal
to stupid things that don’t matter, for example, which brand of cola they drink.1 They

1Blind taste test? People can’t tell the difference.
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either drink Coke and only Coke; or Pepsi and only Pepsi; or, for the purposes of this
example, RC Cola and only RC Cola.2

We want to see how many cavities people get from drinking a beverage that is used to
remove rust from nails. We record their preference in the following manner:

choice = 1 if Coke, choice = 2 if Pepsi, choice = 3 if RC Cola.

Now define dummies for all categories. Let d1 = 1 for choosing Coke; d2 = 1 for choosing
Pepsi; and d3 = 1 for choosing RC Cola. Then the possible values for each dummy are

choice = 1 =⇒ d1 = 1, d2 = 0, d3 = 0,

choice = 2 =⇒ d1 = 0, d2 = 1, d3 = 0,

choice = 3 =⇒ d1 = 0, d2 = 0, d3 = 1.

Notice that in all three cases, d1 + d2 + d3 = 1. And therefore, say, d1 = 1− d2 − d3. This
is perfect multicollinearity because one of our regressors (d1) can be perfectly explained
by a linear relationship of two other regressors (d2 and d3). So if we try to regress cavities
on d1, d2, and d3, then OLS explodes and we’re all doomed.

Except you can just remove any one of the three dummies from the regression, then all
is well and well is all for all. The coefficients of the model are then seen as being relative to
the reference category. To that end, consider the model where we omit the Coke dummy
variable d1, given by

cavities = β1 + β2d2 + β3d3 + ε.

Let us interpret each coefficient.

• β1: how many cavities are associated with being a Coke drinker (reference category);

• β2: how many more (or less, if negative) cavities are associated with being a Pepsi
drinker instead of a Coke drinker;

• β3: how many more (or less, if negative) cavities are associated with being an RC
Cola drinker instead of a Coke drinker.

In the case of the urban workers, β4 captures how much higher of a wage a person receives
if they work in an urban environment relative to working in a non-urban environment
(the reference category).

2No one actually drinks RC Cola, do they?
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7.3 Example: Wages

Again using wages.csv, let us consider the regression proposed earlier,

wage = β1 + β2educ + β3 IQ + β4urban + ε.

OLS estimation yields

ˆwage = −213.28 + 41.58educ + 4.92IQ + 169.01urban.

As shown in the R output below in Figure 4, the p-value for β4 indicates statistically
significance, so we conclude that an urban worker is expected to earn a monthly wage
$169.01 higher than that of a non-urban worker.

8 Interactions

8.1 Marginal Effects

When we have multiple regressors, we might be interested in how they, um, interact
with each other when it comes to explaining the dependent variable. A regression with
interactions will look something like

y = β1 + β2x + β3z + β4xz + ε =⇒ ŷ = b1 + b2x + b3z + b4xz,

where xz is the interaction term. The idea is that x might affect y differently depending
on what value z is, and vice versa. That is, the marginal effect of x on ŷ is given by

dŷ
dx

= b2 + b4z.

When we consider marginally larger x, we expect y to be marginally different by b2 + b4z.

8.2 Example: Foreign Aid and Dictatorships

You might be interested in how foreign aid affects education funding in undeveloped
countries, so you run the regression

educ = β1 + β2aid + ε.
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1 wages <- read.csv("wages.csv")
2 library(stargazer)
3
4 ols3 = lm(wage ∼ educ + iq + urban , data = wages)
5 stargazer(ols3 , type = "text")

> ols3 = lm(wage ∼ educ + iq + urban , data = wages)
> stargazer(ols3 , type = "text")

===============================================
Dependent variable:

---------------------------
wage

-----------------------------------------------
educ 41.581***

(6.729)

iq 4.920***
(0.998)

urban 169.014***
(28.133)

Constant -213.282**
(96.559)

-----------------------------------------------
Observations 852
R2 0.172
Adjusted R2 0.169
Residual Std. Error 368.154 (df = 848)
F Statistic 58.661*** (df = 3; 848)
===============================================
Note: *p <0.1; **p <0.05; ***p <0.01

FIGURE 4: The p-value for β4 (urban) indicates statistically significance at 1%, so we conclude
that an urban worker is expected to earn a monthly wage $169.01 higher than that of a non-urban
worker.

The coefficient β2 tells you the association between an additional dollar of foreign aid
received and education funding for the average undeveloped country; the marginal effect
is constant: one more dollar of foreign aid is associated with $β2 more education funding.

We suspect, however, that the effect of foreign aid is different depending whether the
undeveloped country is democratic or ruled by a dictator. Introduce the dummy variable
dictator = 0 for democracy and dictator = 1 for dictatorship and run the regression

educ = β1 + β2aid + β3(aid× dictator) + ε.

In this formulation, the effect of foreign aid depends on the value of dictator (i.e. the
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interaction of regressors). The marginal effect of foreign aid on education funding is

∂educ
∂aid

= β2 + β3 × dictator.

If the country is a democracy, then the marginal effect of foreign aid on education funding
is just β2. If the country is a dictatorship, then the marginal effect is β2 + β3. A natural
hypothesis is that β3 < 0, or in words: dictatorships that receive foreign aid don’t seem
to allocate as much of that foreign aid into education when compared to a democracy.
(A more nuanced approach would try to measure the degree of dictatorship instead of a
binary designation, but you get the picture.)

9 Variance Inflation Factors

We know from the OLS assumptions that perfect multicollinearity is absolutely ruled out;
it is impossible for OLS to proceed in its presence. However, there is nothing technically
wrong with very high but nonetheless imperfect multicollinearity.

High multicollinearity is still often problematic in practice, however, because it results
in very high standard errors, which in turn make test statistics very small and we end up
not rejecting anything. Makes the whole endeavor kinda pointless.

In other words, the presence of multicollinearity leads to variance inflation. We’d like
to quantify the factor by which variance is inflated by multicollinearity. Hey, let’s call that
the “variance inflation factor” and then proceed to marvel at finally seeing straightfor-
ward terminology in economics.

Yeah anyway, we want to figure out by how much multicollinearity is inflating stan-
dard errors. First, we use the result that

se(bj) =
se√

∑n
i=1(xji − x̄j)2

1√
1− R2

j

, (10)

where R2
j is the R-squared from regressing xj on all other regressors (and intercept); and

se is the standard error of the regression.
Compare this to the variance in a simple regression (where multicollinearity cannot

exist),
se(b2) =

se√
∑n

i=1(xi − x̄)2
. (11)

The only meaningful difference is the factor containing R2
j which captures the degree of
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multicollinearity. Ergo we define the variance inflation factor of regressor xj to be

VIFj ≡
1

1− R2
j
. (12)

If VIFj = 1, from which it follows that R2
j = 0, then there is no multicollinearity be-

tween xj and the other regressors and its standard error is therefore not inflated by mul-
ticollinearity at all. As a rule of thumb, if VIFj > 4 (or equivalently R2

j > .75), then mul-
ticollinearity is considered a problem worth investigating; if VIFj > 10 (or equivalently
R2

j > .90), then multicollinearity is hugely present and is possibly presenting serious
problems.

So to summarize, regressing one regressor on the rest gives you an idea of multi-
collinearity as a function of the consequent R2 measure.

Note that multicollinearity is only a problem if it gives large standard errors for the
regressor you are interested in. If the other variables are just thrown in as controls, then
we don’t really care about doing inference on them, so the large standard errors are of no
practical import.
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