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1 Population Regression

When we estimate things, our estimation is going to depend on whatever sample we
happen to have obtained. That sample is usually not going to be a perfect representation
of the population, so any given sample will differ from the population in random ways.

To illustrate, suppose you have a population of 100 people and you want to estimate
their income. You take a sample of n = 20 randomly selected observations, someone else
takes a sample of a different n = 20 randomly selected observations. Chances are you
won’t sample the exact same 20 people and hence your estimates will be a bit different.
We need to account for that sampling variability.

In the context of regressions, we will look at a scatterplot of data for variables x and y.
The regression line is just the line of best fit through the scatterplot of data. Like any line,
it can be described in terms of a y-intercept and a slope, i.e. y = mx + b. Our terminology
will use β1 as the intercept coefficient and β2 as the slope coefficient for the line that best
fits the entire population of data; but since we only have a random sample, we instead use
our sample data to derive respective estimates b1 and b2.

Our estimation method is called ordinary least squares (OLS). Since we have a line
of best fit, but not a line of perfect fit, the regression line will not lie exactly on top of all
data points. Intuitively the line of best fit will, in some overall sense as described in a bit,
be closest to the data points, which is the objective of the OLS estimation procedure. In
other words, the line of best fit is the one that minimizes how far off it is from the data.
To use OLS estimates, we will rely on a number of assumptions in order to make sure our
estimates for each β have nice properties.

2 Unbiased Estimators

It might help to first refer to Figure 1 below to get a visual feel for what’s going on.

2.1 Assumption OLS1: Linear True Population Model

Again, a regression is just the line of best fit — it is not the line of perfect fit. When we talk
about a specific data point i, we assume that the true population model has linear form

yi = β1 + β2xi + εi. (1)

What this says is we use the line β1 + β2xi to best “predict” what yi should be for a given
value of xi; but since the regression line doesn’t perfectly capture all data points, the
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prediction will be off by εi. Accordingly, εi is called the disturbance term.

Violations of OLS1. Note that the term linear here refers to the fact that the model is
linear in parameters, that is, linear in β1 and β2; there is no restriction placed upon the
functional forms of the variables, however. For example, the model is still linear if we
have something of the form

log(yi) = β1 + β2 log(xi) + εi,

because we can simply define v ≡ log(yi) and w ≡ log(xi) and express the model as

vi = β1 + β2wi + εi.

On the other hand, this assumption would be violated if the true population model actu-
ally has form of, say,

yi = β1 + xβ2
i + εi,

because β2 enters the model exponentially instead of linearly.

2.2 Assumption OLS2: Zero Conditional Mean

The zero conditional mean assumption states that

E[εi|xi] = 0 for all i. (2)

Remember, εi represents how wrong the line of best fit is for data point (xi, yi). The zero
conditional mean assumption means that, given xi, we expect the line of best fit to not be
wrong on average.

It’s important because we’d like an answer for the question, “what do I expect y to
be, given any value of x?” Consider a specific x = x∗, where x∗ is just some number for
which we want to predict y.1 This allows us to write

E[y|x = x∗] = E[β1|x = x∗] + E[β2x|x = x∗] + E[ε|x = x∗]

= β1 + β2x∗.

1For example, we might want to predict how many cavities a person has (y) if they eat 200 grams of
sugar per day (x = 200).
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This is true because β1 and β2 are just numbers — there is nothing random about them
— so we, uh, expect them to be themselves, regardless of what x is. And because of our
zero conditional mean assumption, the disturbance term drops out. Thus, the regression
line is what we expect y to be for a given value of x.

Violations of OLS2. For more intuition, suppose E[εi|xi] 6= 0. Then when we plug in
some data point xi, we expect the model’s prediction of y to be wrong on average. It
makes for a pretty lousy model when we expect it to be wrong, on average.

OLS assumption 2 is equivalent to saying that the disturbance term ε is uncorrelated
with the regressor x. The idea is that we use x to explain y, and ε is all of the other stuff
that explains y that we haven’t included in our model. If changing x has no effect on how
ε in turn affects y, then OLS assumption 2 is satisfied.

To illustrate a failure of OLS assumption 2, consider the regression

wage = β1 + β2education + ε.

I can think of other things besides years of education that might affect someone’s wage,
e.g. their IQ. Here, IQ is part of ε because it is “other stuff” besides education that explains
wage. But IQ is likely correlated with years education. So when you consider different
education, you’re also implicitly considering different IQ, and hence you do not get the
direct relationship between education and wage. In other words, we are not holding IQ
constant, and that gives us a biased estimate of how education relates to wage.

2.3 Summary of OLS1-2

So to summarize the implications of the first two OLS assumptions:

(a) The actual value yi is given by yi = β1 + β2xi + εi.

(b) The regression line is what we expect yi to be, given xi: E[yi|xi] = β1 + β2xi.

(c) Hence the disturbance term is given by εi = yi − E[yi|xi].

OLS assumptions 1 and 2 imply that OLS estimates (explained soon) b1 and b2 of β1 and
β2 are unbiased; in other words, we expect the estimates to be their true values. In maths,
E[b1] = β1 and E[b2] = β2.
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E[y|x] = β1 + β2x
(xi, yi)

εi

E[yi|x = xi]

xi

FIGURE 1: Suppose the dots here capture the entire population of data. Pick some arbitrary data
point (xi, yi). The regression line tells us E[yi|x = xi], that is, what value we expect yi to be for
independent variable xi. This is the conditional mean of yi given xi. But the regression line is a
line of best fit, not a line perfect fit, so the actual value of yi will in general be different than what we
expect it to be based on the regression line. The difference between what yi actually is and what
we expect yi to be based on the regression, yi − β1 − β2xi, is the disturbance term, εi.

3 BLUE

We can throw down two more assumptions to make analysis even nicer.

3.1 Assumption OLS3: Homoskedasticity

The variation of εi given xi is the same number σ2
ε for any xi. In math,

Var(εi|xi) = σ2
ε for all i. (3)

This condition is illustrated in Figure 2.

Violations of OLS3. OLS assumption 3 fails often in practice, but can easily be accom-
modated by using heteroskedasticity-robust standard errors. Mathematically it is be-
yond the scope of this course, but you should know that heteroskedasticity is a thing that
we should be concerned about.)
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FIGURE 2: The figure on the left is an example of heteroskedasticity; the right an example of
homoskedasticity. The left is heteroskedastic because the variation of disturbances around the
regression line gets bigger as x increases.

3.2 Assumption OLS4: Independent Disturbances

Disturbances for different observations are statistically independent, that is,

εi ⊥ εj whenever i 6= j. (4)

Violations of OLS4. When dealing with time series data, disturbances are often cor-
related over time. For instance, a positive disturbance for GDP data indicates above-
average GDP; but if GDP is above-average in one period, there is a good chance it will
be above-average next period as well. Which is to say, a positive disturbance term this
quarter predicts a positive disturbance term in the next quarter (as well as the previous
quarter), so disturbance terms are correlated.

3.3 Summary of OLS1-4

Adding OLS assumptions 3 and 4 allows us to say that the variation of y given x is also
constant, and specifically, Var(y|x) = σ2

ε . OLS assumptions 1-4 imply also imply that
estimates are consistent, provided the variances of the estimates go to zero as n → ∞.
Put somewhat crudely, this means that our estimates get arbitrarily close (in probability)
to their true population values as the sample size increases. Basically the law of large
numbers again. In math, we write b

p→ β.
We can go even further, however. Under OLS assumptions 1-4, the estimates are said
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to be BLUE, which stands for

• Best (estimates have the smallest standard errors...)

• Linear (among linear models...)

• Unbiased (that give unbiased...)

• Estimator (um, estimates.)

4 BUE

We can make a fifth assumption for one more nice result, although we’re pushing it with
this assumption and, frankly, it’s not a particularly important assumption for this course.

Assumption OLS5: Normally Distributed Disturbances. Disturbance terms have nor-
mal distribution with some variance σ2,

εi ∼ N
(

0, σ2
)

. (5)

This allows us to say that OLS estimates are BUE, which means that they have the smallest
standard errors among unbiased models, even when compared to nonlinear models. Also
note that this is an essential condition if we want to do inference on small sample sizes
because it allows us to say that it is exactly true that

b2 − β2

se(b2)
∼ T(n− 2).

5 Recapping the OLS Assumptions

We have five OLS assumptions that give the following implications:

• OLS1 (correct linear model) and OLS2 (zero conditional mean) imply unbiased OLS
estimates and E[y|x] = β1 + β2x.

• Adding OLS3 (homoskedasticity) and OLS4 (independent disturbances) imply that
Var(y|x) = σ2

ε is constant, and that the estimate bi for each βi is consistent.

• OLS assumptions 1-4 therefore imply that OLS β are BLUE.

• Adding OLS5 (normality of disturbances) implies that OLS estimates are BUE and

b2 − β2

se(b2)
∼ T(n− 2) exactly.
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We will weaken many of these assumptions as we go further into the course, but it’s
almost always best to start with the easiest result and then break it down from there.

6 OLS Estimation of a Regression

Again, b1 is the estimate of β1 and b2 the estimate of β2. Intuitively, we want a model
that makes the fewest mistakes possible with the data. We quantify “fewest” by consid-
ering the difference between the actual values yi and the fitted values as predicted by the
model, given by ŷi = b1 + b2xi; this is referred to as the residual, denoted ei, defined as

ei ≡ yi − ŷi = yi − [b1 + b2xi]. (6)

Think of the residual as capturing how wrong the estimated line of best fit is. Minimizing
residuals overall should like a good idea. To summarize,

(a) The actual value yi is given by yi = b1 + b2xi + ei.

(b) The regression line is what we expect yi to be, given xi: ŷi = b1 + b2xi.

(c) Hence the residual is given by ei = yi − ŷi.

Hopefully you’ve noticed that residual ei is like the sample analogue of distubrance εi.
We square each residual to ensure that it’s positive, then we add the squared terms

all up: this is the residual sum of squares (RSS). We want the estimates that minimize the
residual sum of squares. In mathspeak, we want to solve

(b1, b2) = arg min
b1,b2

n

∑
i=1

(
yi − [b1 + b2xi]

)2
= arg min

b1,b2

n

∑
i=1

e2
i . (7)

The solution to this is the ordinary least squares (OLS) estimation for a linear regression.
I omit the details, but explicitly solving OLS (using calculus to find critical points) gives
formulas

b2 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
1

n−1 ∑n
i=1(xi − x̄)(yi − ȳ)

1
n−1 ∑n

i=1(xi − x̄)2
=

sxy

s2
x
= rxy ×

sy

sx
, (8)

b1 = ȳ− b2x̄, (9)
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where sxy is the sample covariance of x and y, defined by

sxy ≡
1

n− 1

n

∑
i=1

(xi − x̄)(yi − ȳ), (10)

and rxy is the sample correlation coefficient of x and y, defined by

rxy ≡
sxy

sxsy
. (11)

I give several different expressions for b2 because, depending on how a problem is worded,
one expression might be more applicable than the others. Note that the first expression
is the one given on the exam formula sheet. The last one is useful because it shows the
relationship between the slope and the correlation coefficient, specifically, you adjust the
correlation coefficient by the ratio of standard deviations.

Again, under OLS assumptions 1 and 2, the estimates will be unbiased: E[b1] = β1 and
E[b2] = β2. That said, they will be different in generality than their population analogues
because, well, they’re estimates. Hence our estimated regression line will be more or
less different than the population regression line, depending on how closely our sample
reflects the population. This is illustrated in Figure 3.

y

x

E[y|x] = β1 + β2x

ŷ = b1 + b2x
ei

◦ ◦

(xi, yi)

◦
ŷi

xi

FIGURE 3: Suppose our sample consists of only the hollow red dots. Thus the estimated regression
line (the solid red line) is different than the true population regression line (dashed in blue). For
data point xi, it gives us a prediction for yi, i.e. the fitted value ŷi. The fitted value will not in
general be exactly the true value yi, and the difference between the true value and the fitted value
is the residual, ei = yi − ŷi. This example illustrates a positive residual, ei > 0.
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Furthermore, OLS assumptions 3 and 4 imply that the variance of the slope estimate
b2 will be

Var(b2) =
σ2

ε

∑n
i=1(xi − x̄)2 ≡ σ2

b2
. (12)

7 Explained and Unexplained Variation

To reiterate, we define the residual sum of squares to be

RSS ≡
n

∑
i=1

(yi − ŷi)
2. (13)

This is the overall measure of how far off the estimated regression line is relative to the
data; each residual is squared so that the “mistakes” are positive. You can think of this as
being the variation of data around ȳ that cannot be explained by x.

Dividing RSS by n− 2 (because we are estimating two parameters, one for each β) and
taking the square root gives the standard error of the regression,

se ≡
√

RSS
n− 2

=

√
1

n− 2

n

∑
i=1

(yi − ŷi)2, (14)

which is the sample analogue of σε as used in OLS3 and OLS4. This is sometimes called
the standard error of the residuals or root mean square error (RMSE).

Take my word for it that ē = 0, that is, the mean of residuals is zero.2 Then if we were
to write down the standard deviation of residuals, taking into account that we now have
n− 2 degrees of freedom, we would write

SD(e) =

√
1

n− 2

n

∑
i=1

(ei − ē)2

=

√
1

n− 2

n

∑
i=1

(ei)2

=

√
1

n− 2

n

∑
i=1

(yi − ŷi)2,

2This was given in lecture as an optional exercise; I leave it as such. But the key is to take the derivative
of equation (7) with respect to b1 and set it equal to zero, which must be the case from minimization of OLS
(again think back to calculus and critical points).
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which is precisely se as given above. The takeaway is that the standard error of the re-
gression is really just the standard deviation of the residual.

On the other hand, the variation of data around ȳ that can be explained by x is the
explained sum of squares,

ESS ≡
n

∑
i=1

(ŷi − ȳ)2. (15)

Finally, the total variation of data around ȳ is given by the total sum of squares,

TSS ≡
n

∑
i=1

(yi − ȳ)2. (16)

Based on the intuition it should not be surprising (not difficult to show either) that

TSS = ESS + RSS. (17)

Total variation is explained variation plus unexplained variation. Great.
The proportion of explained variation around ȳ is called the R-squared or coefficient

of determination, defined as

R2 ≡ ESS
TSS

= 1− RSS
TSS

. (18)

If R2 is high, then x explains a lot about what’s going on with y; if R2 is low, then it doesn’t.
There is no cutoff for what should be considered “high” or “low,” however. Note that R2

also equals the squared correlation between y and x, that is, R2 = r2
xy. Also note that R2

is only valid if the regression includes the intercept.

8 Estimator Properties and Inference

We are primarily interested in β2 because it captures the relationship between x and y.
Under OLS assumptions 1-4, our slope estimator b2 has expected value of β2 because it is
unbiased; and it also has variance σ2

b2
. Thus we can write

b2 ∼ (β2, σ2
b2
). (19)
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For sufficiently large sample size (greater than 30), the z-score is approximately standard
normal, that is,

z ≡ b2 − β2

σb2

,

which is drawn from a N (0, 1) distribution, approximately.
But we don’t actually know what σb2 because is it is a function of σε, which is a un-

known population parameter. So instead we must use the sample estimate of σε, given
earlier as se. This then allows us to conclude that the sample standard error of b2 is

se(b2) =
se√

∑n
i=1(xi − x̄)2

(20)

So under OLS assumptions 1-4, for large enough sample size (which does not have a clear
cut rule-of-thumb in this case), we appeal to the central limit theorem and conclude that

t ≡ b2 − β2

se(b2)
(21)

is drawn from a T(n− 2) distribution, where the distribution is usually approximate. If
we add an additional assumption that the disturbance terms are normally distributed
(OLS5), then we can say that t is drawn from an exact T(n− 2) distribution.

Hence for a hypothesis test with null-hypothesized value β∗2, you would calculate the
t-statistic

t =
b2 − β∗2
se(b2)

and would perform inference about β2 under the assumption that t was drawn from an
approximate T(n− 2) distribution. Furthermore, for a two-sided 95 percent confidence
intervals, for example, you’d use the formula

[b2 ± tn−2,0.025 × se(b2)], (22)

which should look similar (and indeed is analogous) to the confidence intervals of x̄.
We also might want to test whether the R-squared is non-zero. The hypotheses are

H0 : R2 = 0 against H1 : R2 > 0. It is a one-sided test, and therefore we reject only if the
test-statistic is sufficiently large in the positive direction. Here we use the F statistic

F ≡ R2/(k− 1)
(1− R2)/(n− k)

∼ F(k− 1, n− k),

where k = 2 is the number of coefficients being estimated (i.e. β1 and β2). Do note that
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this F-statistic is only valid when disturbances are homoskedastic (i.e. when OLS3 holds);
otherwise we’ll have to use a heteroskedasticity-robust version, which is more difficult than
anything we’d calculate in this class (it requires matrix algebra).

9 Regression by Hand

Okay, so that’s a lot to take in. At this point you should look at the formula sheet on one
of the practice exams, because chances are you’ll be relying on it when exam time comes
around. To help you become familiar, I provide an example. Consider the following data:

(x1, y1) = (0, 2),

(x2, y2) = (3, 3),

(x3, y3) = (3, 4).

Step 1: Estimate Regression Coefficients. One approach is to use a table to methodi-
cally deal with a lot of different parts. For example, after calculating the sample means

x̄ =
1
3
[0 + 3 + 3] = 2,

ȳ =
1
3
[2 + 3 + 4] = 3,

we can fill out the following table:

i xi x xi − x yi y yi − y (xi − x)(yi − y) (xi − x)2 (yi − y)2

1 0 2 −2 2 3 −1 2 4 1

2 3 2 1 3 3 0 0 1 0

3 3 2 1 4 3 1 1 1 1

∑ 6 - - 9 - - 3 6 2

Then use the formula given on the formula sheet to get

b2 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
3
6
= 0.5,

b1 = ȳ− b2x̄ = 3− 0.5(2) = 2.
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Thus our estimated regression is yi = 2 + 0.5xi + ei with fitted values ŷi = 2 + 0.5xi.
Equivalently, you can use sample variances and covariance,

s2
x =

1
n− 1

n

∑
i=1

(xi − Xn)
2 =

6
2
= 3,

s2
y =

1
n− 1

n

∑
i=1

(yi −Yn)
2 =

2
2
= 1,

sxy =
1

n− 1

n

∑
i=1

(xi − Xn)(yi −Yn) =
3
2
= 1.5,

to get

b2 =
sxy

s2
x
=

1.5
3

= 0.5.

Or use correlation coefficient
rxy =

1.5√
3
√

1
≈ 0.866

to calculate
b2 = rxy ×

sy

sx
= 0.866× 1√

3
= 0.5.

Depending on what information is given in a question, one approach will generally be
faster than the others, and may even be the only tenable one.

Step 2: Calculate Residuals. We can find the standard error of the regression by finding
the fitted values, i.e. by plugging each xi into the regression formula and finding the
corresponding ŷi. Doing so gives

ŷ1 = 2 + 0.5(0) = 2,

ŷ2 = 2 + 0.5(3) = 3.5,

ŷ3 = 2 + 0.5(3) = 3.5.

The residuals are the difference between the actual yi and what the regression line expects
yi to be based on xi, which in our case are

e1 = y1 − ŷ1 = 2− 2 = 0,

e2 = y2 − ŷ2 = 3− 3.5 = −0.5,

e3 = y3 − ŷ3 = 4− 3.5 = 0.5.
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FIGURE 4: The first residual is zero because the regression line falls right on top of the actual point.
The second residual is negative because y2 < ŷ2; and the third residual is positive because y3 > ŷ3.

Step 3: Calculate Standard Error of Residual. The residual sum of squares (RSS), uh,
squares each residual and sums them up, so

RSS = (0)2 + (−0.5)2 + (0.5)2 = 0.5.

Now we can find the standard error of the residuals using formula

se ≡
√

RSS
n− 2

=

√
1

n− 2

n

∑
i=1

(yi − ŷi)2 =

√
0.5

3− 2
= 0.707.

Step 4: Calculate Standard Error of Slope Coefficient. The slope coefficient has stan-
dard error

se(b2) =
se√

∑n
i=1(xi − x̄)2

.

So we gotta figure out the denominator. Not a big deal, it’s pretty much just the calcu-
lation for the standard deviation of x but without the division. And in fact we already
know that the sum is 6 from the table above. Therefore the standard error of b2 is

se(b2) =
0.707√

6
≈ 0.289.

Step 5: Verify in R. You can easily verify this all by inputting the data into R and re-
gressing y on x with command lm(y∼ x), or better yet, by using the “stargazer” package:
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1 #install.packages (" stargazer ")
2 library("stargazer")
3
4 x = c(0,3,3)
5 y = c(2,3,4)
6
7 regyx = lm(y∼x)
8
9 stargazer(regyx , type = "text")

10 regyx$fitted.values
11 regyx$residuals

===============================================
Dependent variable:

---------------------------
y

-----------------------------------------------
x 0.500

(0.289)

Constant 2.000
(0.707)

-----------------------------------------------
Observations 3
R2 0.750
Adjusted R2 0.500
Residual Std. Error 0.707 (df = 1)
F Statistic 3.000 (df = 1; 1)
===============================================
Note: *p <0.1; **p <0.05; ***p <0.01

> regyx$fitted.values
1 2 3

2.0 3.5 3.5

> regyx$residuals
1 2 3

0.0 -0.5 0.5

FIGURE 5: Familiarize yourself by connecting these numbers with the ones just derived. The F-
statistic and p-value are for H0 : β = 0 against H1 : β 6= 0. In other words, R by default tests
whether x has non-zero explanatory power for y. For example, if there are three stars for the
coefficient, then that means the coefficient is statistically significant at 1% significance.
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