Command	Explanation	Notes
pnorm(x)	$\Pr(Z \le x)$	
pt(x,n-1)	$\Pr(T_{n-1} \le x)$	
pchisq(x,n-1)	$\Pr\left(\chi_{n-1}^2 \le x\right)$	
pf(x,v1,v2)	$\Pr\left(F_{v_1,v_2} \le x\right)$	
qnorm(p)	gives <i>x</i> satisfying $Pr(Z \le x) = p$	
qt(p,n-1)	gives <i>x</i> satisfying $Pr(T_{n-1} \le x) = p$	
qchisq(p,n-1)	gives <i>x</i> satisfying $\Pr\left(\chi_{n-1}^2 \le x\right) = p$	
qf(p,v1,v2)	gives <i>x</i> satisfying $\Pr(F_{v_1,v_2} \le x) = p$	
t.test()	uh, it performs a <i>t</i> -test	many options
var.test()	performs a two-sample variance test	many options
<pre>prop.test()</pre>	performs a test of proportions	

Use p() functions to find *p*-values and q() functions to find critical values.

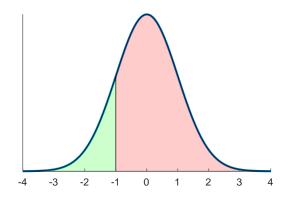


Figure 1: The green area is given in R by the command pt(-1, n-1); the red area with either 1 - pt(-1, n-1) or with pt(-1, n-1, lower.tail=FALSE).

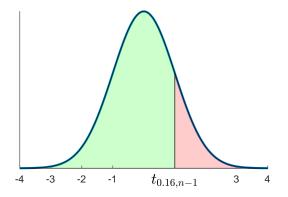


Figure 2: The number $t_{0.16,n-1}$ is such that 84% of the curve lies beneath it; and 16% lies above it. Find it with qt(0.84, n-1) or qt(0.16, n-1, lower.tail=FALSE).

t.test(x, mu=3, alternative="greater", conf.level=.99) Tests $H_0: \mu \leq 3$ against $H_1: \mu > 3$ at 99 percent confidence (i.e. 1 percent significance).

t.test(A, B, var.equal=TRUE)

Tests whether the means of group A and group B are equal at 5 percent significance, assuming the two groups have the same variance.

var.test(A, B, alternative="greater")

Tests whether group A has larger variance than group B at 5 percent significance.