Command	Explanation	Notes
iv_robust()	2SLS regression	requires "estimatr"
ts()	creates time series object	
window(ts)	change window of ts	
VARselect(ts)	selects lag for $AR(p)$ for ts	requires "vars"
adf.test(ts)	ADF stationarity test of ts	requires "aTSA"
diff(ts)	takes difference of of ts	
final(seas(ts))	seasonal adjustment of ts	requires "seasonal"
auto.arima(ts)	automatically specify and estimate SARIMAX	requires "forecast"
forecast()	forecasts SARIMAX model	requires "forecast"

Two-Stage Least Squares

```
### Test IV strength and endogeneity of educ
  | ### High p-value means instrument is weak
  | ### High p-value means educ is exogenous
4
   {	t ivReg} = {	t iv\_robust(log(wage)} \sim {	t log(educ)} + {	t log(exper)} + {	t log(feduc)}
5
                         + log(meduc) + urban |
6
                       log(distance) + log(exper) + log(feduc)
7
                         + log(meduc) + urban,
8
                       data=wages,diagnostics = TRUE)
9
   summary(ivReg)
10
11 ### Test overidentification of both distance and sibs as IV for educ
   ### High p-value means model is just identified
12
   ivRegOID = iv\_robust(log(wage) \sim log(educ) + log(exper) + log(feduc)
13
14
                          + log(meduc) + urban |
15
                          log(distance) + log(sibs+.001) + log(exper) +
16
                            log(feduc) + log(meduc) + urban,
17
                          data=wages, diagnostics = TRUE)
18
  summary(ivRegOID)
```

SARIMAX Model

```
1 | ### quarterly time series object from 2000Q1 to 2020Q4
  myTS = ts(data, start=c(2000,1), end=c(2020,4), frequency=4)
3
4 ### test for stationarity
5 \mid dfTestLagMax = floor(12*(length(myTS)/100)^(1/4))
  dfTestLag = VARselect(myTS, lag.max = dfTestLagMax)
6
7
  adf.test(myTS, nlag = dfTestLag$selection[3])
9
  ### estimate and forecast series
10 | fit = auto.arima(myTS, stepwise=FALSE, approximation=FALSE)
11 | fc = forecast(fit)
12 | plot(fc$fitted,col="red")
                                  ## plot fitted values with real series
13 | lines(fc$x,col="blue")
                                  ## overlay real series
14
  |plot(fc)
                                  ## forecast beyond real series
```