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1 Multiple Regression

1.1 Motivation: Omitted Variables

Suppose you are interested in understanding how wages are related to years of education,
so you look at the model

wage = β1 + β2educ + v.

For now, think of v as being the typical error term. The interpretation is that we want to
explain wage with educ and “other stuff” captured in v.

Now ask yourself: of the “other stuff” in v that explains wage, is any of that also
correlated with education? I am strongly inclined to say “yes.” Take IQ for example.
I would expect a higher IQ to explain a higher wage; but I also suspect that there is a
correlation between IQ and years of education (e.g. college students have a higher IQ
than the general public). So when we consider someone with more education, we are
also likely considering someone with a higher IQ. This is problematic because β2 in the
regression above is implicitly telling us the effect of education and of IQ on wage, and
therefore β2 does not isolate the effect of education on wage.

In other words, we are failing to hold IQ constant when considering different levels of educa-
tion, and consequently we are getting both the effect of higher education and the effect of
higher IQ in our estimate of β2. This relationship is illustrated in Figure 1.

That we fail to include a variable that is correlated with both the independent and
dependent variable means our estimate for β2 will be biased, that is, E[b2] 6= β2. We refer
to this as omitted variable bias. Technically this is consequence of violating classical OLS
assumption 2 (see below), i.e. zero conditional mean, because E[v|educ] 6= 0.

So how do we progress? Simple: just stick IQ into the regression as well. Our im-
proved model is thus of the form

wage = β1 + β2educ + β3 IQ + u.

Now when we take the partial derivative with respect to education, we are explicitly
holding IQ constant by definition of a partial derivative. Therefore

∂wage
∂education

= β2

gives the relationship between education and wage where IQ is being controlled for.
Of course, there are probably other omitted variables as well. In a laboratory exper-
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iment, ideally all of these factors can be controlled for if the experiment is properly de-
signed. But we are limited to the data we observe, which may or may not contain all
relevant variables. (Probably won’t.) Thus, even if we control for a bunch of variables,
we still can never be certain that we have fully determined the direct relationship between
any x and y.

more education higher wage

higher IQ

FIGURE 1: More education is correlated with higher wage, but it’s also correlated with higher IQ.
If we do not hold IQ constant, then we are not accurately characterizing the relationship between
education and wage.

On the other hand, if an omitted regressor is correlated with y but not with x, then
omitting it is fine. The omitted regressor is still part of u because it is something that
explains y but isn’t in the regression. But because it isn’t correlated with x, the zero con-
ditional mean assumption E[u|x] = 0 still holds, and therefore estimates are still unbiased
and consistent.

For instance, consider again wage = β1 + β2educ + v. Tall people on average earn a
higher wage than short people, so height is relevant in explaining wage: it’s part of v, one
of the “other things” that explain wage. But tall people are not on average more educated
than short people, so height is not correlated with educ. In this case there is no omitted
variable bias from omitting height: changes in education do not mean we are implicitly
considering changes in height.

To so summarize:

• If a variable is relevant (it explains y) and is correlated with any included regressors,
then it is a confounding variable: omitting it from the regression violates OLS assump-
tion 2 and estimates suffer from the omitted variable bias and are inconsistent.

• If a variable is relevant (it explains y) and is not correlated with any included re-
gressors, then omitting it from the regression is fine: estimates are unbiased and
consistent.
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1.2 Example: Wages

Import wages.dta into Stata. It contains, you guessed it, information about (monthly)
wages, education, IQ, and some other stuff. If we regress wages on education, the result
is

ŵage = 139.12 + 61.59× educ.

This implies that someone with one more year of education would be expected to have a
higher monthly wage by $61.59. But as discussed earlier, this is implicitly including the
effect of a higher IQ, since the model above fails to control for IQ. We control for IQ by
regressing wage on both education and IQ. By doing so, we expect the effect of education
to be lower because now the effect isn’t being exaggerated by a higher IQ. Indeed,

ŵage = −131.67 + 44.27educ + 4.95IQ.

So as predicted, the estimated effect of education on wage drops from 61.59 to 44.27.
Before controlling for IQ, our estimate of β2 had an upward bias.

The relevant Stata commands and output are given below.

. regress wage educ

Source | SS df MS Number of obs = 852
-------------+---------------------------------- F(1, 850) = 107.82

Model | 15622714.1 1 15622714.1 Prob > F = 0.0000
Residual | 123165191 850 144900.225 R-squared = 0.1126

-------------+---------------------------------- Adj R-squared = 0.1115
Total | 138787905 851 163088.02 Root MSE = 380.66

------------------------------------------------------------------------------
wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
educ | 61.58627 5.931167 10.38 0.000 49.94482 73.22772

_cons | 139.1171 81.16017 1.71 0.087 -20.18069 298.415
------------------------------------------------------------------------------

. regress wage educ iq

Source | SS df MS Number of obs = 852
-------------+---------------------------------- F(2, 849) = 67.17

Model | 18960227.2 2 9480113.62 Prob > F = 0.0000
Residual | 119827678 849 141139.786 R-squared = 0.1366

-------------+---------------------------------- Adj R-squared = 0.1346
Total | 138787905 851 163088.02 Root MSE = 375.69

------------------------------------------------------------------------------
wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
educ | 44.26802 6.851945 6.46 0.000 30.81928 57.71676

iq | 4.954005 1.018755 4.86 0.000 2.954432 6.953578
_cons | -131.6712 97.5547 -1.35 0.177 -323.1479 59.80543

------------------------------------------------------------------------------
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2 Classical OLS Assumptions

For OLS to “work” by default, we need the following conditions to hold given dependent
variable y and the set of regressors x2, x3, . . . , xk. Note that we have k − 1 regressors
because we started at x2. Therefore we will be estimating k things because we are also
estimating the intercept coefficient. Hence we will have n− k degrees of freedom when
we do inference.

1. MLR1: Correct Linear Model. The true model is linear and correctly specified as

y = β1 + β2x2 + β3x3 + . . . + βkxk + u. (1)

Intuition: if we estimate a population model that’s actually of a different form, then
our estimates are probably garbage.

2. MLR2: Zero Conditional Mean. The error term has zero mean conditional upon
the regressors, that is,

E[u|x2, . . . , xk] = 0. (2)

Intuition: think of the error term as being the mistake of the model. If we expect
the mistake to be non-zero on average, then our model is probably garbage. This
condition is equivalent to saying that u is uncorrelated with all of the regressors.

More technically, it allows us to go from

y = β1 + β2x2 + β3x3 + . . . + βkxk + u

E[y|x2, . . . , xk] = β1 + β2x2 + β3x3 + . . . + βkxk, (3)

the latter being the interpretation of the regression line itself (i.e. the conditional
expectation of y given our regressors).

3. MLR3: Homoskedasticity. The conditional variance of the error term is constant
and finite, that is,

Var(u|x2, . . . , xk) = σ2
u < ∞. (4)

There isn’t much economic intuition here; it’s mostly a technical assumption, albeit
an unrealistic one, that offers a convenient starting point for rigorous analysis. In
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practice it is violated frequently, which is not difficult to deal with (as explained
later). This condition is illustrated in Figure 2.

FIGURE 2: The figure on the left is an example of heteroskedasticity; the right an example of
homoskedasticity. The left is heteroskedastic because the variation around the regression line gets
bigger as x increases. Good luck envisioning this in higher dimensions.

4. MLR4: Independent Errors. Errors for different observations are statistically inde-
pendent, that is,

ui ⊥ uj whenever i 6= j.

Intuition: if model errors are correlated, then there is some underlying pattern that
we are overlooking, so our results are probably garbage.

As an example of a violation, suppose we look at ECN 102 final exam scores in all of
2017; that means we’re looking at ECN 102 final exam scores for three different pro-
fessors. Problem is, different professors write exams of differing difficulty. Hence
we would expect a lenient professor’s students to do better than the regression pre-
dicts (so we’d have correlation among observations with positive u), and we expect
a challenging professor’s students to do worse than what the regression predicts
(so we’d have correlation among observations with negative u). This is called clus-
tering because each professor’s final exam forms a cluster of students. (Note that
students in different clusters, however, are independent from each other.)

5. MLR5: Normality of Errors. Errors are normally distributed with variance σ2, i.e.,

ui ∼ N
(

0, σ2
)

. (5)

This is another technical assumption for “nice” results, explained below. In practice
it can be weakened, but it is necessary for inference on small sample sizes.
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6. MLR6: No Perfect Multicollinearity. There exists no exact linear relationship be-
tween explanatory samples. Furthermore, the number of observations must be
greater than the number of explanatory variables (plus constant term), i.e. n ≥ k.

Intuition: if there is such a perfect relationship between two or more regressors, then
we can’t “untangle” the effect of each regressor. In other words, it’s like including
the same regressor twice, and that redundancy breaks the OLS solution technique.

3 Implications of OLS Assumptions

You can see that most of these assumptions are close analogues to the simple regression,
the exception being MLR6. You will not be surprised then to learn that the implications
are largely the same as well.

• Assumptions MLR1-2 imply that OLS estimates are unbiased, so that E[bj] = β j.

• Assumptions MLR1-4 imply that OLS estimates are consistent, so that bj
p→ β j

as n → ∞. Furthermore, assumptions MLR1-4 imply that OLS is the best linear
unbiased estimator, or BLUE. When we say “best,” we mean they have the smallest
standard errors and hence precision of inference is the most accurate.

• Adding MLR5 implies that OLS is the best unbiased estimator, or BUE, even when
compared to nonlinear methods. Furthermore, it implies that

t ≡
bj − β j

se(bj)
∼ T(n− k)

is exactly true for any β j, even for small samples; without MLR5 it is only approx-
imately true if the sample size is large enough. (Therefore MLR5 is required for
inference on small samples.) We are estimating k things, which is why we have
n− k degrees of freedom.

• Assumption MLR6 is absolutely required; in the presence of perfect multicollinear-
ity, the regression cannot be executed. Accordingly, this is usually just implicitly as-
sumed because otherwise it’s game over and we should just give up and go home.
(Actually, there’s usually a very easy fix for it, shown in a bit.)
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4 Including Irrelevant Regressors

Suppose we accidentally include some regressor x` that does not explain y at all, thereby
making it irrelevant. Well, because it’s irrelevant, its coefficient will be β` = 0, and there-
fore the population regressions

y = β1 + β2x2 + . . . + βkxk + u,

y = β1 + β2x2 + . . . + βkxk + β`x` + u,

are actually identical. So nothing is violated by including the irrelevant regressor: the
results are still unbiased and consistent, provided OLS assumptions 1 and 2 hold for
everything else. The problem is that OLS still has to try to estimate β` if x` is included,
which is just adding noise to the estimation process. This means the regression will be
less precise (i.e. higher standard errors). But you’re usually better off with less precise
estimates than biased ones, so most researchers err on the side of including regressors
that might be irrelevant.

5 Multiple Regression Inference

Under MLR1-4, the t-statistic regarding regressor xj is given by

t =
bj − β j

se(bj)
, (6)

and it is drawn from an approximate T(n− k) distribution.Inference proceeds in the usual
way. There is no rule of thumb for how large n needs to be for the approximation to be
adequate. If MLR5 holds, then t is drawn from exact T(n− k) distribution.

If either MLR3 or MLR4 fail, then the typical standard errors are not valid. We can
oftentimes use one of the following alternatives, however.

• vce(robust): use heteroskedasticity-robust standard errors if only MLR3 fails

• vce(cluster, x): use cluster-robust standard errors if MLR4 alone fails because of
suspected clustering in variable x

• use heteroskedasticity and autocorrelation-consistent (HAC) standard errors if us-
ing time series data.
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Autocorrelation means the value of a variable today is correlated with its value in pre-
vious periods (e.g. GDP data). Time series is a different animal in Stata, so don’t worry
about the command for it.

6 Dummy Variables

6.1 Definition of Dummy Variable

We might be interested in seeing how different categories affect the dependent variable.
For instance, we might want to see if someone working in an urban environment earns
more than someone working elsewhere. To analyze, we construct a dummy variable that
is equal to either zero or one. An urban worker would have value urban = 1, and a non-
urban worker would have value urban = 0. Accordingly, we would run the regression

wage = β1 + β2educ + β3 IQ + β4urban + u.

The coefficient β4, then, would tell you the expected difference in monthly wage for an
urban worker compared to a non-urban worker. Another way of thinking about it is, β4

captures the expected change in wage if a worker moves from a non-urban environment
to an urban environment, that is, if urban changes from 0 to 1.

6.2 Dummy Variable Trap

Notice in the preceding example that there are two categories, but only one dummy vari-
able. In general, if you have m categories, then you must include exactly m− 1 dummy
variables; the category you omit is called the reference category. Including dummy vari-
ables for all categories results in the dummy variable trap, which is a source of perfect
multicollinearity that breaks OLS estimation. So always use one fewer dummy than there
are categories (or drop the intercept; this is less common).

Here’s a silly example to illustrate why things go wrong. People become really loyal
to stupid things that don’t matter, for example, which brand of cola they drink.1 They
either drink Coke and only Coke; or Pepsi and only Pepsi; or, for the purposes of this
example, RC Cola and only RC Cola.2

We want to see how many cavities people get from drinking a beverage that is used to

1Blind taste test? People can’t tell the difference.
2No one actually drinks RC Cola, do they?
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remove rust from nails. We record their preference in the following manner:

choice = 1 if Coke, choice = 2 if Pepsi, choice = 3 if RC Cola.

Now define dummies for all categories. Let d1 = 1 for choosing Coke; d2 = 1 for choosing
Pepsi; and d3 = 1 for choosing RC Cola. Then the possible values for each dummy are

choice = 1 =⇒ d1 = 1, d2 = 0, d3 = 0,

choice = 2 =⇒ d1 = 0, d2 = 1, d3 = 0,

choice = 3 =⇒ d1 = 0, d2 = 0, d3 = 1.

Notice that in all three cases, d1 + d2 + d3 = 1. And therefore, say, d1 = 1− d2 − d3. This
is perfect multicollinearity because one of our regressors (d1) can be perfectly explained
by a linear relationship of two other regressors (d2 and d3). So if we try to regress cavities
on d1, d2, and d3, then OLS explodes and we’re all doomed.

Except you can just remove any one of the three dummies from the regression, then all
is well and well is all for all. The coefficients of the model are then seen as being relative to
the reference category. To that end, consider the model where we omit the Coke dummy
variable d1, given by

cavities = β1 + β2d2 + β3d3 + u.

Let us interpret each coefficient.

• β1: how many cavities are associated with being a Coke drinker (reference category);

• β2: how many more (or less, if negative) cavities are associated with being a Pepsi
drinker instead of a Coke drinker;

• β3: how many more (or less, if negative) cavities are associated with being an RC
Cola drinker instead of a Coke drinker.

In the case of the urban workers, β4 captures how much higher of a wage a person receives
if they work in an urban environment relative to working in a non-urban environment
(the reference category).
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6.3 Example: Wages

Again using wages.dta, let us consider the regression proposed earlier,

wage = β1 + β2educ + β3 IQ + β4urban + u.

OLS estimation yields

ŵage = −213.28 + 41.58educ + 4.92IQ + 169.01urban.

As shown in the Stata output below, the p-value for β4 indicates statistically significance,
so we conclude that an urban worker is expected to earn a monthly wage $169.01 higher
than that of a non-urban worker. To account for the possibility of heteroskedasticity, I tell
Stata to use heteroskedasticity-robust standard errors with the option vce(robust).

. regress wage educ iq urban , vce(robust)

Linear regression Number of obs = 852

F(3, 848) = 53.41

Prob > F = 0.0000

R-squared = 0.1719

Root MSE = 368.15

------------------------------------------------------------------------------

| Robust

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | 41.58144 6.793912 6.12 0.000 28.24658 54.91629

iq | 4.919558 .944874 5.21 0.000 3.064992 6.774124

urban | 169.0137 26.54763 6.37 0.000 116.907 221.1205

_cons | -213.2816 95.91454 -2.22 0.026 -401.5393 -25.02381

------------------------------------------------------------------------------

7 Interactions

7.1 Marginal Effects

When we have multiple regressors, we might be interested in how they, um, interact
with each other when it comes to explaining the dependent variable. A regression with
interactions will look something like

y = β1 + β2x + β3z + β4xz + u =⇒ ŷ = b1 + b2x + b3z + b4xz,

10

www.wimivo.com


ECN 102, Spring 2020 - Multiple Regression www.wimivo.com

where xz is the interaction term. The idea is that x might affect y differently depending
on what value z is, and vice versa. That is, the marginal effect of x on ŷ is given by

dŷ
dx

= b2 + b4z.

When we consider marginally larger x, we expect y to be marginally different by b2 + b4z.

7.2 Example: Foreign Aid and Dictatorships

You might be interested in how foreign aid affects education funding in undeveloped
countries, so you run the regression

educ = β1 + β2aid + u.

The coefficient β2 tells you the association between an additional dollar of foreign aid
received and education funding for the average undeveloped country; the marginal effect
is constant: one more dollar of foreign aid is associated with $β2 more education funding.

We suspect, however, that the effect of foreign aid is different depending whether the
undeveloped country is democratic or ruled by a dictator. Introduce the dummy variable
dictator = 0 for democracy and dictator = 1 for dictatorship and run the regression

educ = β1 + β2aid + β3(aid× dictator) + u.

In this formulation, the effect of foreign aid depends on the value of dictator (i.e. the
interaction of regressors). The marginal effect of foreign aid on education funding is

∂educ
∂aid

= β2 + β3 × dictator.

If the country is a democracy, then the marginal effect of foreign aid on education funding
is just β2. If the country is a dictatorship, then the marginal effect is β2 + β3. A natural
hypothesis is that β3 < 0, or in words: dictatorships that receive foreign aid don’t seem
to allocate as much of that foreign aid into education when compared to a democracy.
(A more nuanced approach would try to measure the degree of dictatorship instead of a
binary designation, but you get the picture.)
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