Command	Explanation	Abbreviation
scalar a = 5	defines scalar $a = 5$	
scalar list	lists scalars	
ttail(df,c)	number satisfying $Pr(T > c)$ for $T \sim T(df)$	
invttail(df,p)	number satisfying t^* such that $Pr(T > t^*) = p$	
display a	displays value of scalar <i>a</i> or ttail or etc	di
ttest x = c	t-test for $H_0: \mu_x = c, \mu_x \le c$, and $\mu_x \ge c$	
mean x, level(95)	estimates mean of x , 95% confidence interval	

Summary Statistics and Scalars

```
sum x, detail scalar xbar = r(mean) xbar equals mean of x scalar stdev = r(sd) stdev equals standard deviation of x scalar n = r(N) n equals number of observations for x scalar t = invttail(n-1,0.05/2) t equals 2-sided 5% critical value with df = n - 1
```

Calculating 95% Confidence Intervals

```
scalar CI_lb = xbar - invttail(n-1,0.05/2)*stdev/sqrt(n)
scalar CI_ub = xbar + invttail(n-1,0.05/2)*stdev/sqrt(n)
di CI_lb, CI_ub
```

Or use mean x. You can change the level to, say, 90%, with command mean x, level (90).

Hypothesis Testing at .05 Significance

FIGURE 1: The number $\Pr(|T| > |t|) = 0.0174$ is the two-sided *p*-value for null $H_0: \mu_{price} = 7000$. We reject the null at 5% and 10% significance because 0.0174 is less than 0.05 and 0.10. We do not reject at 1% because the *p*-value is greater than 0.01. The other two alternative hypotheses are for one-sided tests.