Problem 1

Estimate the demand function for the data below using a spreadsheet.

	A	B	C
1	obs	\mathbf{P}	\mathbf{Q}
2	1	100	1400
3	2	200	1200
4	3	300	600

Solution 1

What we want to do is estimate the line of best fit through the data (shown in red below), making sure that Q is on the vertical axis and P is on the horizontal axis. You will not get the same result if you mix up the axes.

The relevant command in either Google sheets or Excel is linest (), which will give you the slope and the intercept of the line. In this case, we would use

$$
=1 \text { inest (C2:C4,B2:B4) }
$$

Notice that the first argument $\mathrm{C} 2: \mathrm{C} 4$ captures data for Q and the second argument B2: B4 captures data for P, and it has to be in this order.

After entering the command into a cell, you'll see the numbers -4 1866.67. The number 1866.67 is the vertical intercept of the demand curve and -4 is the slope; therefore the estimated demand curve is

$$
Q=1866.67-4 P
$$

Solve the demand curve for P to find the inverse demand curve,

$$
P=466.67-0.25 Q
$$

In the homework, you would then use the inverse demand function to solve the remainder of the problem. And one last time: yes, you really do have to estimate the demand function first and then invert the estimated demand function. If you don't believe me, then try estimating the inverse demand function directly; you'll get different (i.e. wrong) numbers.

Problem 2

Consider the following spatial competition problem.

- There are two pizza places, each on the opposite end of a mile-long street evenly filled with consumers. Both pizza places are delivery-only.
- The pizza place on the far-left end of the street—Pizza Place A—sells a pizza that consumers think has a value of $v_{A}=22$. Their marginal cost per pizza is $c_{A}=1$.
- The pizza place on the far-right end of the street—Pizza Place B—sells a pizza that consumers think has a value of $v_{B}=25$. Their marginal cost per pizza is $c_{B}=2.5$.
- Each pizza place charges $a=2$ per mile for delivery.

Complete the following:
(a) Find the equilibrium price for each pizza place.

Solution. Utility for going to Pizza Place A is $U_{A}=22-P_{A}-2 d$, and utility for going to Pizza Place B is $U_{B}=25-P_{B}-2(1-d)$. The indifferent consumer satisfies

$$
22-P_{A}-2 d=25-P_{B}-2(1-d) \quad \Longrightarrow \quad d^{*}=\frac{P_{B}-P_{A}-1}{4}
$$

from which we conclude that

$$
Q_{A}=\frac{P_{B}-P_{A}-1}{4}, \quad Q_{B}=1-\frac{P_{B}-P_{A}-1}{4}=\frac{P_{A}-P_{B}+5}{4} .
$$

It follows that Pizza Place A has profit function of

$$
\begin{aligned}
\Pi_{A} & =P_{A} Q_{A}-c_{A} Q_{A} \\
& =P_{A}\left(\frac{P_{B}-P_{A}-1}{4}\right)-1\left(\frac{P_{B}-P_{A}-1}{4}\right) \\
& =\left(\frac{P_{A} P_{B}-P_{A}^{2}-P_{A}}{4}\right)-1\left(\frac{P_{B}-P_{A}-1}{4}\right) .
\end{aligned}
$$

Differentiate Π_{A} with respect to P_{A} and set it equal to zero and you get

$$
\left(\frac{P_{B}-2 P_{A}-1}{4}\right)-1\left(\frac{-1}{4}\right):=0 \quad \Longrightarrow \quad P_{A}=\frac{P_{B}}{2}
$$

Likewise, Pizza Place B has profit function of

$$
\begin{aligned}
\Pi_{B} & =P_{B} Q_{B}-c_{B} Q_{B} \\
& =P_{B}\left(\frac{P_{A}-P_{B}+5}{4}\right)-2.5\left(\frac{P_{A}-P_{B}+5}{4}\right) \\
& =\left(\frac{P_{A} P_{B}-P_{B}^{2}+5 P_{B}}{4}\right)-2.5\left(\frac{P_{A}-P_{B}+5}{4}\right) .
\end{aligned}
$$

Differentiate Π_{B} with respect to P_{B} and set equal to zero and you get

$$
\left(\frac{P_{A}-2 P_{B}+5}{4}\right)-2.5\left(\frac{-1}{4}\right):=0 \quad \Longrightarrow \quad P_{B}=\frac{P_{A}+7.5}{2} .
$$

We now have two equations for two unknowns. I'll use substitution to solve.

$$
\begin{aligned}
P_{B} & =\frac{P_{A}+7.5}{2} \\
& =\frac{\frac{P_{B}}{2}+7.5}{2} \\
\Longrightarrow \quad 2 P_{B} & =\frac{P_{B}}{2}+7.5 \\
\Longrightarrow \quad 4 P_{B} & =P_{B}+15 \\
\Longrightarrow \quad P_{B}^{*} & =5
\end{aligned}
$$

Now plug the solution to P_{B} into the BRF for P_{A} and you get $P_{A}^{*}=\mathbf{2 . 5}$.
(b) Find the equilibrium quantity sold for each pizza place.

Solution. Plug in the solutions for P_{A} and P_{B} to get

$$
\begin{aligned}
& Q_{A}=\frac{P_{B}-P_{A}-1}{4}=\frac{5-2.5-1}{4}=0.375 \\
& Q_{B}=\frac{P_{A}-P_{B}+5}{4}=\frac{2.5-5+5}{4}=0.625 .
\end{aligned}
$$

(c) Find the equilibrium profit for each pizza place.

Solution. Plug in the solutions for P_{A}, Q_{A}, P_{B}, and Q_{B} to get

$$
\begin{aligned}
& \Pi_{A}=P_{A} Q_{A}-c_{A} Q_{A}=(2.5)(0.375)-(1)(0.375)=\mathbf{0 . 5 6 2 5} \\
& \Pi_{B}=P_{B} Q_{B}-c_{B} Q_{B}=(5)(0.625)-(2.5)(0.625)=\mathbf{1 . 5 6 2 5}
\end{aligned}
$$

