Present Value

Present Value

Given constant discount rate r, a cash flow stream $\left(C_{1}, C_{2}, \ldots\right)$ has present value of

$$
\begin{aligned}
\operatorname{PV}\left(C_{1}, C_{2}, \ldots\right) & =\sum_{t=0}^{\infty} \operatorname{PV}\left(C_{t}\right) \\
& =\frac{C_{1}}{(1+r)}+\frac{C_{2}}{(1+r)^{2}}+\ldots
\end{aligned}
$$

Including C_{0}, usually a cash outflow (i.e. payment) gives the net present value (NPV). Note that r can be an interest rate on a bond or the cost of capital.

Perpetuity

A perpetuity that pays C each period has present value

$$
P V=\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\ldots=\frac{C}{r} .
$$

Perpetuity with Growth

A perpetuity with growth rate has a present value of

$$
\begin{aligned}
\mathrm{PV} & =\frac{C_{1}}{(1+r)}+\frac{(1+g) C_{1}}{(1+r)^{2}}+\frac{(1+g)^{2} C_{1}}{(1+r)^{3}}+\ldots \\
& =\frac{C_{1}}{r-g^{\prime}}
\end{aligned}
$$

where g is the growth rate of the payment each period. This formula is only valid if $g<r$.

Annuity

An annuity that pays C each period for T periods has a present value of

$$
\begin{aligned}
P V & =\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\ldots+\frac{C}{(1+r)^{T}} \\
& =\frac{C}{r}\left[1-\left(\frac{1}{1+r}\right)^{T}\right] .
\end{aligned}
$$

Annuity with Growth

An annuity with growth that pays C each period for T periods has a present value of

$$
\begin{aligned}
P V & =\frac{C}{(1+r)}+\frac{(1+g) C}{(1+r)^{2}}+\ldots+\frac{(1+g)^{T-1} C}{(1+r)^{T}} \\
& =\frac{C}{r-g}\left[1-\left(\frac{1+g}{1+r}\right)^{T}\right],
\end{aligned}
$$

where g is the growth rate of the payment each period.

Coupon Bond

A coupon bond with face value $F V$, coupon payments C, and maturity of T periods, has present value of

$$
\begin{aligned}
P V & =\frac{C}{(1+r)}+\frac{C}{(1+r)^{2}}+\ldots+\frac{C}{(1+r)^{T}}+\frac{F V}{(1+r)^{T}} \\
& =\frac{C}{r}\left[1-\left(\frac{1}{1+r}\right)^{T}\right]+\frac{F V}{(1+r)^{T}} .
\end{aligned}
$$

Resale Value

The resale value of a perpetuity after T periods is

$$
R V=\frac{C}{r}\left(\frac{1}{1+r}\right)^{T} .
$$

Converting Interest Rate Periods

For annual interest rate r_{a}, the corresponding monthly interest rate r_{m} is found by solving

$$
\left(1+r_{m}\right)^{12}=1+r_{a} \quad \Longrightarrow \quad r_{m}=\left(1+r_{a}\right)^{1 / 12}-1
$$

Weekly or daily interest rates are found by replacing 12 with 52 or 365 , respectively. The corresponding five year interest rate r_{5} is found by solving

$$
\left(1+r_{a}\right)^{5}=1+r_{5} \quad \Longrightarrow \quad r_{5}=\left(1+r_{a}\right)^{5}-1 .
$$

Capital Budgeting Rules

Net Present Value

Given constant discount rate r, a cash flow stream (C_{1}, C_{2}, \ldots) with cost $C_{0} \leq 0$ has net present value of

$$
\begin{aligned}
\mathrm{NPV} & =C_{0}+\sum_{t=0}^{\infty} \mathrm{PV}_{r}\left(C_{t}\right) \\
& =C_{0}+\frac{C_{1}}{(1+r)}+\frac{C_{2}}{(1+r)^{2}}+\ldots
\end{aligned}
$$

If NPV >0, then the stream of discounted cash flows exceeds the cost and thus the project is worth doing. Given a choice of projects, a firm will choose the project that gives the highest NPV.

Internal Rate of Return

For cash flow stream ($\left.C_{0}, C_{1}, C_{2}, \ldots\right)$, the internal rate of return (IRR) is the number satisfying

$$
0=C_{0}+\frac{C_{1}}{(1+\mathrm{IRR})}+\frac{C_{2}}{(1+\mathrm{IRR})^{2}}+\ldots
$$

For this to be satisfied, we must have at least two C_{i}, C_{j} of opposite signs. We might find multiple positive solutions, or no positive solutions, in which case there is no welldefined IRR.
An investment project (C_{0}, C_{1}, \ldots) with cost of capital r should be accepted when IRR is well-defined and greater than r. (Small r means discount future payments less.)
For investment financing, accept if IRR is well-defined and is less than r. (Large r means discount future costs more.)

Profitability Index

For cash flow stream ($\left.C_{0}, C_{1}, C_{2}, \ldots\right)$, the profitability index is

$$
\mathrm{PI}=\frac{\operatorname{PV}\left(C_{1}, C_{2}, \ldots\right)}{\left|C_{0}\right|}
$$

Intuitively, it is the ratio of present value of cash flow to the initial investment cost C_{0}. If the project generates a larger present value of cash flow than initial cost, then $P I>1$ and the project is worth doing.

