
ECN 200D—Lucas Trees and Cash

Adapted from Athanasios Geromichalos’ lectures
William M Volckmann II

1 Asset Pricing

1.1 The Lucas Trees Model (CAPM)

The Lucas Trees model is a capital asset pricing model (CAPM). In it, there exist trees
that produce fruit of quantity dt in period t, where dt ∈ {d1, . . . , dN} possible states of
production. Typically we will be assuming a Markov process, i.e.

P(dt+1 = dj|dt = di) = πij.

The supply of trees T is fixed and exogenous, so we may as well just normalize the supply
of trees to T = 1. Fruit from the tree is nonstorable. An agent has a share s of the fruit
that the tree produces.

The Bellman equation for the representative agent is given by

Vi(s) = max
ci,s′

{
u(ci) + β

N

∑
j=1

πijVj(s′)

}
.

Given that the current state of the world is i, the agent wants to choose how much to
consume and how much of a share of the tree to have tomorrow based on the expected
value of tomorrow’s level of production.

Let ψi denote the price of a unit of stock when the state of the world is i. Then the
agent’s budget constraint is can be written as

ci + ψis′ = (ψi + di)s.

In other words, the amount consumed today and the amount of tomorrow’s shares pur-
chased today must equal the value of today’s shares plus the value of today’s fruit, i.e.
today’s nominal wealth.
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Plugging the budget constraint into the Bellman equation gives

Vi(s) = max
s′

{
u
(
[ψi + di]s − ψs′

)
+ β

N

∑
j=1

πijVj(s′)

}
.

Then the first order condition is

u′(ci)ψi = β
N

∑
j=1

πijV′
j (s

′). (1)

Plug in the policy function s′ = g(s) and then take the first order condition of

Vi(s) = u
(
[ψi + di]s − ψig(s)

)
+ β

N

∑
j=1

πijVj
(

g(s)
)

with respect to s for the envelope condition

V′
i (s) = u′(ci)(ψi + di). (2)

Updating the envelope condition by a period, change the state of the world to j, and in
combination with the first order condition we get

u′(ci)ψi = β
N

∑
j=1

πiju′(c′j)(ψ
′
j + dj). (3)

In equilibrium we will have supply equaling demand. There’s a fixed supply 1 = s =

s′ = s′′ = . . .. It follows from the budget constraint that ci = di c′j = dj. Therefore we can
write condition (3) as

u′(di)ψi = β
N

∑
j=1

πiju′(dj)(ψ
′
j + dj). (4)

This condition hold for all i = 1, . . . N, so we have N conditions.

1.2 Special Case: N = 1

When N = 1, the model is not stochastic—we have dt = d in all cases. So we can rewrite
the asset pricing formula in equation (3) as

u′(d)ψ = βu′(d)(ψ′ + d) =⇒ ψ′ =
ψ

β
− d.
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This sequence follows an “explosive path,” so the only admissible solution is the steady
state solution where

ψ =
ψ

β
− d =⇒ ψ∗ =

βd
1 − β

.

So the price of the asset is the value of the discount stream of dividends, i.e. its “funda-
mental value.”

1.3 General Case

Okay, now let’s consider the steady state of the general case,

u′(di)ψi = β
N

∑
j=1

πiju′(dj)(ψj + dj),

where i = 1, . . . , N. We can write the system as the matrix

Uψ = βπU(ψ + d),

where π is the Markov matrix in which the (ij)th entry is πij. Doing some matrix algebra,
we can solve for

ψ∗ = (U − βπU)−1βπU′d.

This is, without question, something for a computer to solve.

2 Monetary Theory: The Basics

2.1 The Fisher equation

In general, asset price is equal to its discounted payment, i.e.

asset price =
payment
(1 + r)n . (5)

We’ll be dealing in one period intervals, so we’ll have n = 1 from now on.
Let pt be the price of an asset that has a nominal interest rate of i. The real price of the

asset is the goods you’re giving up, e.g. the real price 1/pt. The payment in real terms is
(1 + i)/pt+1. So from equation (5),

1
pt

=
(1 + i)/pt+1

1 + r
=⇒ pt+1

pt
=

1 + i
1 + r

. (6)
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The rate of inflation is the rate of growth in the price level, so

πt =
pt+1 − pt

pt
=⇒ pt+1

pt
= 1 + πt. (7)

Plug in equation (6) and we get
1 + i
1 + r

= 1 + πt.

Solving for i, we get the Fisher equation,

i = r + πt + rπt. (8)

2.2 Inflation and Money Growth

Claim. In a steady state monetary model where supply of money grows at a constant rate µ,
π = µ.

Proof. The money growth rate implies that Mt+1 = (1 + µ)Mt. In a steady state, real
variables do not change, and therefore the level of real balances Mt/pt is constant. It
follows that

Mt

pt
=

Mt+1

pt+1
=⇒ pt+1

pt
=

Mt+1

Mt
= 1 + µ.

From equation (refinflation), it follows that

1 + µ = 1 + π =⇒ µ = π.

2.3 Illiquid Real Interest Rate

Claim. The real interest rate of a fully illiquid bond in a standard (monetary) model is given by
r = 1/β − 1.

Think of a world where agents can buy a one period real discount bond which gives
you one unit of the numeraire good tomorrow. What price ψ are you willing to pay? Well,
given your discount rate of β, you’ll be willing to pay β · 1. It follows from equation (5)
that

β =
1

1 + r
=⇒ r =

1
β
− 1.

2.4 The Friedman Rule

Claim. The rate of money growth is µ = β − 1 < 0 when the nominal interest rate i = 0.

4



Proof. From the Fisher equation, we have 1 + i = (1 + r)(1 + π). From the previous
results, we know that 1 + r = 1/β and 1 + π = 1 + µ. It follows that

1 + i =
1
β
(1 + µ) =⇒ µ = β(1 + i)− 1.

Since the assumption is i = 0, the result follows.

3 Cash in Advance (CIA) Model

3.1 The Setup

We will have measure 1 of homogeneous agents in an endowment economy with non-
storable endowment et = e. The central bank prints money and the money supply grows
at the rate of µ, so

Mt+1 = (1 + µ)Mt.

We will assume that µ ≥ β − 1, which does allow for negative µ. The quantity of money
printed Tt will be transferred to each agent—and since the measure of agents is 1, it means
each individual receives Tt.

This model is a little bit on the goofy side. The agent must have money on hand in
order to buy and thus consume the good, even though they have the exact same good as
their endowment. Furthermore, they must choose how much money to carry with them
from the previous period. So if they chose to not carry any cash from last period to this
period, and if the central bank prints no cash, then the agent can’t buy, and therefore
cannot consume, anything—even though they have a positive endowment of the thing
they want to consume!

3.2 The Bellman Equation

Let m denote the choice of a representative agent of how much money to hold. The Bell-
man equation for the agent is

V(m) = max
c,m′

{u(c) + βV(m′)}, (9)

subject to the budget constraint

pc + m′ = pe + m + T, (10)
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and the cash in advance constraint,

pc ≤ m + T. (11)

The CIA constraint says that the agent cannot spend more on consumption than money
they have with them.

When we combine the budget constraint and the CIA constraint, we end up with
m′ ≥ pe, or better yet in real terms,

e ≤ m′

p
.

This seems sensible—we’ve already established that the agent cannot eat their endow-
ment, so the only way to get utility from it is to sell it for money and then eventually use
the money for consumption. This means there’s no reason to not sell all of the endowment
and have at least m′ in cash available for next period.

Now evidently if we take the Lagrange multipliers for the problem, then we can
rewrite the Bellman equation as

V(m) = max
m′

{
u
(

e +
m + T − m′

p

)
+ λ

(
m′

p
− e

)
+ βV(m′)

}
.

I guess this is the way of incorporating the CIA constraint into the Bellman equation itself.
I don’t really have any intuition beyond that. In practical terms, we can at least say that

λ

(
m′

p
− e

)
= 0

functions as a typical complementary slackness condition.

3.3 First Order Conditions

With respect to m′, we have
u′(c)

p
− λ

p
= βV′(m′).

The envelope condition (remember that we can just ignore the chain-rule effects and keep
the direct effect) gives

V′(m) =
u′(c)

p
=⇒ V′(m′) =

u′(c′)
p′

.
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Combine the first order condition and the envelope condition to get

u′(c)
p

− λ

p
= β

u′(c′)
p′

=⇒ u′(c)− λ = βu′(c′)
p
p′

. (12)

3.4 Equilibrium Conditions

M is the money supply m in the money demand. So in equilibrium, M = m. We also have
that M′ = M + T. These two conditions allow us to rewrite the budget constraint as

pc = pe. (13)

So the amount of money spent on consumption equals the amount of money earned from
selling the endowment. That is, c = c′ = . . . = e. Given how silly this model is, this result
should not come as a surprise.

Furthermore, notice that

p
p′

=
1/p′

1/p
=

M′/p′

M(1 + µ)/p
=

z′

(1 + µ)z
,

where zt = Mt/pt is real money balances. In the steady state, every real variable is
constant, so z′ = z. Therefore

p
p′

=
1

1 + µ
.

This allows us to rewrite equation (12) as

u′(c)
[

1 − β

1 + µ

]
= λ. (14)

Furthermore, we can rewrite the complementary slackness condition as

λ [(1 + µ)z − e] ≥ 0. (15)

3.5 Money Growth Rates

In this weird model, the only reason to hold money is so you can buy your endowment.
How how much money will you hold? It will depend on µ, and in particular, whether the
Friedman rule is adhered to or not.
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Case 1: µ = β − 1. This is the case where the Friedman rule is adhered to, i.e. when
i = 0. From equation (14), this would imply that λ = 0, so complementary slackness is
satisfied. Thus we know that m′ > pe.1

Case 2: µ > β− 1. It follows that

1 − β

1 + µ
> 0.

From equation (14), it follows that λ > 0. This in turn implies from complementary
slackness that pe = m′. In words, you should carry the exact amount of money you need
to buy stuff and not one penny more.

4 Cash Goods vs. Credit Goods

4.1 The Setup

Suppose the endowment is coconuts. The coconuts can be converted into two goods,
say, coconut juice and coconut candy, which have the same price. So in this model, there
are two consumption goods arising from the same endowment. Here’s the quirk of the
model. If you want to consume c1, then you have to purchase it using money. The market
for c2, however, does not require cash.

We’ll be making the following assumptions about utility. First, both unmixed partials
are strictly negative, i.e. u11 < 0 and u22 < 0. Furthermore, we will ensure an interior
solution (positive consumption of both goods) by imposing an Inada condition of

lim
c1→0

c1(c1, c2) = ∞ = lim
c2→0

c2(c1, c2).

In other words, if you have practically no ci, then consuming a little bit more ci will
increase your utility dramatically.

1In lecture he said this implies a strict inequality, but I do not see why that is necessarily true—there is
nothing preventing both factors in the complementary slackness condition from being zero. (Although it’s
rare in practice to actually have them both zero.)
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4.2 The Bellman Equation

The Bellman equation for the representative agent is

V(m) = max
c1,c2,m′

{u(c1, c2) + βV(m′)}.

The budget constraint is given by

pc1 + pc2 + m′ = pe + m + T,

and the CIA constraint is
pc1 ≤ m + T.

We can combine the two constraints into

p(e − c2) ≤ m′ =⇒ e − c2 ≤ m′

p
.

So now the Bellman equation can be written as

V(m) = max
c2,m′

{
u
(

e − c2 +
m + T − m′

p
, c2

)
+ λ

(
m′

p
+ c2 − e

)
+ βV(m′)

}
, (16)

where our complementary slackness condition is given by

λ

(
m′

p
+ c2 − e

)
.

4.3 First Order Conditions

With respect to c2, the first order condition is

u1(c1, c2) = u2(c1, c2) + λ.

With respect to m′, we get
u1(c1, c2)

p
=

λ

p
+ βV′(m′).

The envelope condition is

V′(m) =
u1(c1, c2)

p
=⇒ V′(m′) =

u1(c′1, c′2)
p′

.

9



Plugging the envelope condition into the second first order condition, we have

u1(c1, c2)

p
− λ

p
= β

u1(c′1, c′2)
p′

=⇒ u1(c1, c2)− λ = β
p
p′

u1(c′1, c′2). (17)

4.4 Equilibrium Conditions

Again, mt = Mt in equilibrium because supply must equal demand. This allows us to
rewrite the budget constraint as

pc1 + pc2 + M′ = pe + M + T =⇒ p(c1 + c2) = pe

because M′ = M + T. It follows that c1 + c2 = e, which isn’t all that surprising—a person
ultimately consumes their endowment, even though they go through this rigmarole to
get it. It follows that c1 = e − c2.

From the first section of these notes, we found that

p′

p
= 1 + µ =⇒ p

p′
=

1
1 + µ

.

We can use this to rewrite equation (17) and the first order condition with respect to c2 as

u1(e − c2, c2)− λ =
β

1 + µ
u1(e − c′2, c′2)

u1(e − c2, c2)− λ = u2(e − c2, c2).

It follows that
β

1 + µ
u1(e − c′2, c′2) = u2(e − c2, c2). (18)

Hey, this is insightful. The social planner would like the marginal utilities to be equalized.
But they may or may not be equalized depending on what µ is. In other words, µ is having
a real effect on the equilibrium.

4.5 Observations

Suppose that u = β − 1 so that the Friedman rule is observed. It follows that

β

1 + u
= 1,
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which implies that the marginal utilities in equation (18) are equalized. Indeed, the social
planner’s solution is only achieved when the Friedman rule is observed.

What about existence and uniqueness? We can get everything we need from c2. Define

G(c2) = u2(e − c2, c2)−
β

1 + µ
u1(e − c2, c2).

Any point where G(c2) = 0 defines an equilibrium, so we’ll want to know the shape of
G(c2).

Consider what happens when c2 → 0. From the Inada conditions, u2 will go to infinity
and therefore G(c2) will go to infinity. Now consider what happens when c2 → e. Then
the first argument approaches zero, so u1 will go to infinity and G(c2) will go to negative
infinity. We know the asymptotic behavior, and because G(c2) is continuous, existence of
equilibria is established.

For uniqueness, we need the function to be strictly downward sloping. Evaluating the
derivative gives

G′(c2) = −u21 + u22 +
β

1 + µ
u11 −

β

1 + µ
u12

u22 +
β

1 + µ
u11 − u12

(
1 +

β

1 + µ

)
.

We have assumed that u22 and u11 are both strictly negative. We have no idea what
sign u12 is, however, so we cannot guarantee uniqueness. For some functional forms,
we’ll be able to establish that u12 ≥ 0, for example if we make the utility separable, i.e.
u(c1, c2) = v(c1) + w(c2).

4.6 Comparative Statics

Suppose there’s a unique equilibrium, which requires u12 ≥ 0. We want to know what
happens if there’s a change in the rate of money growth µ. Equilibrium requires that

(1 + µ)u2(e − c2, c2) = βu1(e − c2, c2).

We’ll use the implicit function theorem. Write c2(µ) as a function of µ. Note that this
implies c′1(µ) = −c′2(µ). So take the derivative of both sides with respect to µ and we
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have

u2 = [β(u12 − u11) + (1 + µ)(u12 − u22)]c′2(µ)

=⇒ c′2(µ) =
u2/(1 + µ)(

1 +
β

1 + µ

)
u12 −

β

1 + µ
u11 − u22

.

The mixed partials are both negative and are both being subtracted, and u12 is also
assumed nonnegative in this case, so the denominator is positive. We also know that
u2 > 0, so we can conclude that c′2(µ) > 0. The implication is that a higher growth rate of
money means a higher rate of inflation, increasing the cost of holding money. People will
respond by consuming more of good 2 because doing so requires no money.
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