
ECN 200D—McCall Search Model

Adapted from Athanasios Geromichalos’ lectures
William M Volckmann II

These notes will introduce the McCall search model, which is a nice introduction into
the world of search theory. In this case, it is an alternative approach to studying the
phenomenon of unemployment, which the typical Walrasian analysis does not account
for. Our goal is to maximize the function

E0

[
∞

∑
t=0

βtyt,

]

where yt represents the income received in period t and, in this case, the utility received.
There will be uncertainty about what precisely yt will be in each period t, hence the expec-
tation. The subscript on the expectation operator reflects the fact that we are maximizing
the expectation from time t = 0; we know what y0 is while maximizing, but not what any
other subsequent yt will be. We will assume that the economy consists of people identical
to this person, so any solution we find will reflect the economy’s equilibrium.

1 Setup

For simplicity, we will define the income function to be

yt =

w if employed

z if unemployed, 0 < z < w.

In each period t, unemployed workers receive a job offer distributed according to F, that
is, w ∼ F, where the support of F is the interval [w, w]. If the unemployed worker accepts
the job offer, then the job is kept forever. If the worker does not accept the job offer, then
they continue to the next period to receive a new offer.

It turns out that there is a unique equilibrium to this problem. In particular, there
exists a unique number R such that w < R < w and people will accept their job offer if it
exceeds R. This number R is called the reservation wage.
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2 Behavior

Let V(w) be the value function of being employed at wage w. Since the worker is em-
ployed forever, she therefore receives w in each period, and hence

V(w) = w + βw + β2w + . . . =
w

1 − β
.

To an unemployed worker, this is seen as the value for accepting the job offer with wage
w.

Let U be the value function for being employed. Notice that U has not been made
a function of w in the way that V(w) has. This is because the value of remaining un-
employed does not depend on whatever offer you received today – it is a function of
whatever offers you are expected to receive in the future. We will write

U = z + βE[J(w′)], (1)

where J(w′) is the value of receiving the offer w′, not the value of actually accepting it. In
other words,

J(w) = max{V(w), U} = max
{

w
1 − β

, z + βE[J(w′)]

}
. (2)

Let’s try to digest this a little bit more. Suppose you receive a job offer today with
wage w. Then you have two choices.

(a) Accept the job offer and receive V(w) as your payoff, or

(b) Remain unemployed, receive z today, and try your luck again next period – that is,
face J(w′) with a new random wage w′, discounted by a period.

Of those two, you will choose the one that gives the higher payoff, i.e. the maximum.
Thus, the value of choosing to be unemployed is to receive z today and face a new choice
tomorrow – this is the value function U as written above. This means we have a functional
equation and we want to solve for J(·).

As a first line of attack, let’s just try to graph J(w). Graphing V(w) is rather easy since
it is simply w/(1 − β). Graphing U is also easy since, as we just said, it is not even a
function of w; thus, is it a horizontal line. The graph is shown in Figure 1.
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Figure 1: The value function is the thick, blue line.

The thick blue line represents the maximum of V(w) and U. The two functions inter-
sect at the reservation wage w = R. This is intuitive. If the value of being unemployed is
greater than the value of accepting the job at wage w, then reject the job offer. If the value
of the job at wage w is greater than the value of remaining unemployed, then accept the
job offer. The wage R is where the worker is indifferent between remaining unemployed
or accepting the job at wage R.

We can use this information to write U = R/(1 − β). Thus, we can rewrite function
(2) as

J(w) = max
{

w
1 − β

,
R

1 − β

}
=

max{w, R}
1 − β

.

This is nice because instead of having to solve for a function, we only have to solve for
the scalar R, which should be a considerably easier task. Because U = R/(1 − β), we can
use equation (1) to write

U =
R

1 − β
= z + β

∫ w

w

max{w′, R}
1 − β

f (w′) dw′,

where the integral is the expectation.1 Multiply both sides by 1 − β. Then R∗ solves

R = (1 − β)z + β
∫ w

w
max{w′, R} f (w′) dw′. (3)

So how we do actually solve it? We will explore two different approaches.

1He used w instead of w′ in his analysis. Nothing changes, but usage of w′ seems more consistent with
what came prior.
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3 Solution Method 1

Define the function

G(R) = (1 − β)z + β
∫ w

w
max{w′, R} f (w′) dw′ − R.

From equation (3), we know that any R satisfying G(R) = 0 is a solution.
Evaluating G(w), and noting that max{w, w} = w, we get

G(w) = (1 − β)z + β
∫ w

w
max{w′, w} f (w′) dw′ − w

= (1 − β)z + βw
∫ w

w
f (w′) dw′ − w.

Notice that the integral is evaluating a density function over its entire support. Thus, the
integral simply evaluates to 1. So we have

G(w) = (1 − β)z + βw − w = (1 − β)(z − w).

Since β ∈ (0, 1), the first term is positive. And since z < w, the second term is negative.
Thus, G(w) < 0.

G(R)

R(
w, G(w)

)
?

Figure 2: The shape of G(R) is unclear at present.

Figure 2 shows G(w) < 0. But it is not clear what the rest of the function G(R) looks
like. Ideally it would look something like that shown because it crosses the R-axis exactly
once and thus there exists a unique solution. For this to be satisfied, we require two
things. First, we’ll want G′(R) < 0 so that it slopes down (and never back up). Second,
we’ll want G(w) > 0 so that we’re guaranteed to cross the R-axis. Let’s analyze.

4



3.1 Derivative Check (Uniqueness)

Let us first (re)familiarize ourselves with the Leibniz rule. For our purpose, it can be
stated as

d
da

[∫ b

a
f (x) dx

]
= − f (a).

Intuitively, this says that when we increase the lower limit of integration by just a tiny lit-
tle bit, we’ll remove that tiny little slice under the function from the area being integrated.
Similarly,

d
db

[∫ b

a
f (x) dx

]
= f (b).

So if we increase the upper limit of integration by just a tiny little bit, we’ll add that tiny
little slice under the function to the area being integrated.

Now back to the economics. To compute G′(R), let’s rewrite G(R) as

G(R) = (1 − β)z + βR
∫ R

w
f (w′) dw′ + β

∫ w

R
w′ f (w′) dw′ − R.

We can apply Leibniz’s rule to this. The result will be

G′(R) = β

[
R f (R) +

∫ R

w
f (w′) dw′ − R f (R)

]
− 1

= β
∫ R

w
f (w′) dw′ − 1.

We’re integrating a density function over less than its entire support, and then multiply-
ing it by β ∈ (0, 1), so G′(R) < 0. This is good.

3.2 Positivity Check (Existence)

To guarantee a solution, we need G(R) = 0 somewhere, which means we need G(w) > 0
so that the function crosses the R-axis. Evaluating, we have

G(w) = (1 − β)z + β
∫ w

w
max{w′, w} f (w′) dw′ − w

= (1 − β)z + β
∫ w

w
w′ f (w′) dw′ − w

= (1 − β)z + β − w

= (1 − β)z + βE[w′]− w.
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It’s not really obvious that this is positive. We would need

E[w′] >
w
β
−

[
1 − β

β

]
z.

To illustrate, suppose that w = 10, z = 5, and E[w′] = 30. The plot of each side of the
inequality is shown in Figure 3.
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Figure 3: Low β individuals has no reservation wage.

The thick, blue segment of the function indicates the values of β that satisfy positiv-
ity of G(w). Thus, if β is too small, then there is no reservation wage. Recall that a low
value for β indicates that people are impatient and thus heavily discount whatever im-
provement a high wage might provide in the future. If people care about the future little
enough, they will never work.

G(R)

R(
w, G(w)

)

(
w, G(w)

)

Figure 4: G(w) is positive, G(w) is negative, the slope is strictly negative, and the function
is continuous. Thus, the function must take on this shape, indicating the existence of a
unique reservation wage.
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So in order to have a unique solution, we will simply assume that

(1 − β)z + βE[w′]− w > 0.

In certain cases, e.g. where w ∼ uni f [0, 1], the assumption is satisfied.

4 Solution Method 2

Let’s go ahead and assume that w ∼ uni f [0, 1]. This really amounts to a normalization of
the distribution of wages. We’re going to try to apply the contraction mapping theorem
to solve. Recall that a mapping T : [0, 1] → [0, 1] is a contraction if for any x, y ∈ [0, 1], we
have

d
(
T(x), T(y)

)
≤ kd(x, y), k ∈ [0, 1).

We are dealing with real numbers, so we can use the absolute value metric.
Define the function

T(R) = (1 − β)z + β
∫ 1

0
max{w, R}1 dw,

where f (x) = 1 is the density of uni f [0, 1]. We will show that this is a contraction. For
any x, y ∈ [0, 1], the distance d

(
T(x), T(y)

)
=

∣∣∣∣(1 − β)z + β
∫ 1

0
max{w, x} dw − (1 − β)z − β

∫ 1

0
max{w, y} dw

∣∣∣∣
= β

∣∣∣∣∫ 1

0
max{w, x} dw −

∫ 1

0
max{w, y} dw

∣∣∣∣
= β

∣∣∣∣x ∫ x

0
dw +

∫ 1

x
w dw − y

∫ y

0
dw −

∫ 1

y
w dw

∣∣∣∣
= β

∣∣∣∣x2

2
− y2

2

∣∣∣∣
= β

∣∣∣∣ (x − y)(x + y)
2

∣∣∣∣
= β |x − y|

∣∣∣∣x + y
2

∣∣∣∣ .

Since x, y ∈ [0, 1], it follows that x + y ≤ 2. Therefore, (x + y)/2 ≤ 1. And since β < 1, it
follows that

d
(
T(x), T(y)

)
≤ kd(x, y), k ∈ [0, 1).
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So T(R) is in fact a contraction.
Furthermore, because ([0, 1], |·|) is a complete space, we know that the contraction

mapping theorem holds. Thus we can draw two important conclusions:

(a) There exists a unique R∗ such that T(R∗) = R∗.

(b) For any R0 ∈ [0, 1], define the sequence Rn+1 = T(Rn) for n ∈ N. Then limn→∞ Rn =

R∗.

5 Comparative Statics

We might want to ask what effect an increase in z will have on either unemployment or
R∗. To find the effect a change in z would have on R∗, we want to use the implicit function
theorem and totally differentiate G(R) = 0. In particular, we have

d
dz

G
(

R(z), z
)
=

∂G
∂R

dR
dz

+
∂G
∂z

= 0 =⇒ dR
dz

= − ∂G/∂z
∂G/∂R

.

The numerator is 1 − β. What about the denominator? Well, we already showed that
G′(R) < 0 in subsection 3.1 when we were showing the existence of the reservation wage.
Thus, overall, dR/dz > 0.

So when there is a higher unemployment benefit, there will be a higher reservation
wage. Since wages are random draws, this makes it less likely that a draw will be above
the reservation wage and thus less likely that unemployed workers will accept a job offer.
Thus, higher unemployment. This can be seen as an upward shift of the U function to U′.

J(w)

w

U
U′

V(w)

R R′

Figure 5: Higher unemployment benefit increases the reservation wage.
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6 Solution Summary

i. Solve the value function of being employed V(w) = w/(1 − β).

ii. By definition, U = V(R) = R/(1 − β). Insert this into J(w) to get

J(w) =
max{w, R}

1 − β
.

iii. Now evaluate U with (ii). Solve for R.

iv. Take the equation from (iii) and solve it for zero. Call this G(R). Any R satisfying
G(R) = 0 is a solution.

v. Evaluate G(w) to establish negativity.

vi. Use Leibniz’s rule to calculate G′(R) < 0.

vii. Establish that G(w) > 0 so that a solution is guaranteed to exist by continuity (and is
unique by strictly negative slope). We will often just assume whatever is necessary
to satisfy this condition.

Alternatively, you could use the contraction mapping theorem, but that will be rather
tedious to execute.
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