
ECN 200D—Mortensen-Pissarides Model

Adapted from Athanasios Geromichalos’ lectures
William M Volckmann II

These notes will briefly discuss Poisson processes and bargaining. Then it will begin to
introduce the Mortensen-Pissarides model of labor markets.

1 Poisson Processes

Let Nt(ω) denote the number of occurrences of the event ω up to time t. The set N =

{Nt, t ≥ 0} is an arrival process. We will be focusing on the Poisson process.

(a) Any jump in N will be of size 1.

(b) For any t, s ≥ 0, the difference Nt+s − Nt is independent of u for any u < t. (Poisson
is memoryless.)

(c) For any t, t′, the difference Nt+s − Nt = Nt′+s − Nt′ . (Poisson is time invariant.)

Recall that the probability mass function for a Poisson distributed random variable is

P(Nt = k) =
e−λt(λt)k

k!
.

It turns out that λ is the arrival rate, that is, it tells us how many times an event will
happen per unit time.

Considering E[Nt], we can calculate it as

E[Nt] =
∞

∑
k=0

kP(Nk = k)

=
∞

∑
k=0

k
e−λt(λt)k

k!
.

Since the first term will evaluate to zero, we can start the sum at k = 1 instead, giving

e−λt
∞

∑
k=1

k
(λt)k

k!
.
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We have k/[k(k − 1)(k − 2) . . .], which we can simplify to

e−λt
∞

∑
k=1

(λt)k

(k − 1)!
.

We can shift the index back down to zero, but we have to compensate by shifting the k
terms in the summand up by one, giving

e−λt
∞

∑
k=0

(λt)k+1

k!
= e−λt(λt)

∞

∑
k=0

(λt)k

k!
.

The sum is the Taylor series expansion for eλt, so we can finally simplify to

e−λt(λt)eλt = λt.

Great, so E[Nt] = λt. This should be intuitive. If we something happens, on average,λ
times in 1 unit of time, then we should expect it to happen tλ times in t units of time.

2 Bargaining

We’ll be considering a game between two players – a firm and worker. The idea is that
firms have machines, workers have the skill and labor to use the machines. Alone they’re
unproductive, but together they can produce output. The question is, how is the output
divided between the two? In order words, they need to bargain over a wage.

If they make an agreement, then their payoffs will be in some set S. In particular, there
will be some function f (S, d) → S that gives the solution to the bargaining problem. In
other words, the function looks at the set of agreements payoffs S and the disagreement
payoffs and assigns an “optimal” agreement. The particular agreement assigned will
depend on the bargaining power of the players. Let θ ∈ [0, 1] be player 1’s bargaining
power. (Then 1 − θ is player 2’s bargaining power.)

We will consider two axiomatic approaches to bargaining.

2.1 Nash Bargaining

The axioms John Nash decided would be reasonable for a bargaining equilibrium are the
following.

(a) Irrelevance to equivalent utility representations. The set S represents preferences, which
we’ll usually be able to represent as utility functions. Utility functions, of course, can
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be subjected to positive monotone transformations without altering the underlying
preferences. Thus, we want the same solutions to emerge with any utility function
that represents the preferences.

(b) Independence of Irrelevant Alternatives. Suppose that f (S, d) maps to S′, where S′ ⊂ S.
Then it should be the case that the solution of f (S, d) = f (S′, d). In other words,
none of the agreements in S \ S′ were a solution, so we shouldn’t expect the solution
to change if those agreements become infeasible.

(c) Pareto Efficiency.

The collection of these axioms give rise to Nash bargaining.
There is a rather long and ugly proof, but it turns out that the solution for the bargain-

ing problem is actually the Stone-Geary function

fθ(S, d) = arg max
s∈S

(s1 − d1)
θ(s2 − d2)

1−θ.

The coordinate s = (s1, s2) contains two points in the agreement set for player 1 and 2,
respectively. Player 1 moving to s1 generates a surplus of s1 − d1, and player 2 moving to
s2 generates a surplus of s2 − d2. Finding the agreement points that maximize these sur-
pluses, weighted by the relative bargaining power, is what solves the bargaining problem.

Example 1. We have a pie! Um, it’s a pie of size 1. We want to choose what fraction q of
the pie will go to player 1. Then player 2 will get fraction 1 − q. If no agreement is made,
then they get d1 and d2 fractions, respectively.

We can write the Nash bargaining problem as

arg max
q∈[0,1]

(q − d1)
θ(1 − q − d2)

1−θ.

Since we are only interested in the maximizing argument q, we can take a monotonic
transformation of the objective function without altering the maximizers. So hey, why
not take a logarithm of it? Then we’re solving

arg max
q∈[0,1]

θ log(q − d1) + (1 − θ) log(1 − q − d2).

It’s a function only of θ, so we can take the derivative to find the critical point. This
first-order condition gives

θ

q − d1
− 1 − θ

1 − q − d2
= 0 =⇒ θ

q − d1
=

1 − θ

1 − q − d2
.
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Do some algebra and you’ll find that

q = d1 + θ(1 − d1 − d2).

This is unsurprising, since this is indeed the solution to the Stone-Geary utility maximiza-
tion problem. You can think of it like this. Player 1 automatically gets fraction d1 of the
pie, player 2 automatically gets fraction d2 of the pie. Then, of the remaining pie, player 1
gets θ of it. Similarly, player 2 gets

1 − q = d2 + (1 − θ)(1 − d1 − d2). ■

Example 2. Now let’s suppose that a firm meets a worker. If they agree to work, then
they’ll produce output of p. The worker can also just sit at home and collect an unem-
ployment payment of z. So they’ll need to bargain over some wage w for the worker. Let
θ be the bargaining power of the worker.

If the job is accepted, then the worker gets w; if not, then z. So the surplus generated
by the worker would be w − z. If the job is accepted, then the firm produces p; if not, then
the firm still has that w in wage payments. So the surplus generated by the firm would
be p − w. Thus, the bargaining problem is

arg max
w

(w − z)θ(p − w)1−θ.

Again, let’s log it up to instead solve

arg max
w

θ log(w − z) + (1 − θ) log(p − w).

It’s a function of one variable w, so just take the derivative with respect to w and set it
equal to zero to find the critical point. As you might have expected, the solution is

w = z + θ(p − z). ■

2.2 Kalai Bargaining

Add one axiom to Nash bargaining and we have Kalai bargaining.

(d) Monotonicity. If S ⊆ S′, then f j(S′, d) ≥ f j(S, d), for players j = 1, 2. In other words,
if we are considering a larger set of possible agreements, then no one can be worse
off.
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I find this to be rather questionable since choice paralysis is a well-studied phenomenon.
But whatever. The nice thing about incorporating this extra axiom is that the solution
becomes even simpler, in particular,

f k
θ (S, d) = arg max

s∈S
(s1 − d1) s.t. s1 − d1 =

θ

1 − θ
(s2 − d2).

The takeaway is that we now have proportionate solutions to the bargaining situation.

Example 3. Let’s split that pie! Sounds sexy. The problem we want to solve is

max
q

(q − d1) s.t. q − d1 =
θ

1 − θ
(1 − q − d2).

Well ah, the constraint already gives us everything we need. Just solve it for q to find that
q = d1 + θ(1 − d1 − d2). This is the same solution given by the Nash bargaining problem!
Indeed, for simple models like this, the two will give the same results. ■

3 Mortensen-Pissarides Model

3.1 The Environment

(a) Time is continuous an infinite in horizon.

(b) The labor force is normalized to 1.

(c) u denotes the proportion of unemployed workers. (Also the number of unemployed
workers because of the previous point.)

(d) v is the number of vacancies.

(e) Workers receive z per unit of time when unemployed.

(f) There exist infinitely many firms that could potentially open a vacancy.

(g) Each firm has one vacancy.

(h) While the vacancy is unfilled, firms pay cost p · c, where p is the amount of good
that would have been produced were the vacancy filled. Think of c as a recruitment
cost. We multiply them together to capture the idea that more productive jobs have
higher recruitment costs.

(i) The rate of job destruction is given by λ, the arrival rate of a Poisson process.

(j) After λ hits, the worker goes back to unemployment, and the firm goes back to the
pool of firms that could potentially open a vacancy.
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3.2 The Matching Function

We will be using a matching function m(u, v) → m that describes the amount of matches
made, i.e. jobs formed, within a period. Once a match is formed, any surplus is split
between the firm and the worker according to Nash bargaining, where β denotes the
bargaining power of the worker.

(a) m(u, v) is increasing in both arguments. The intuition is that if there are more unem-
ployed workers, then firms will have an easier time finding the right worker; and
if there are more vacancies, then workers will have an easier time finding the right
job.

(b) m(u, v) is concave. This isn’t really important for us.

(c) m(u, v) is homogeneous of degree one, which is to say, m(λu, λv) = λm(u, v) for
λ > 0.1

Define θ = v/u. This represents market tightness. If the number of vacancies v is
relatively large compared to the number of job seekers u, then the labor market is consid-
ered tight. On the other hand, when the number of vacancies is relatively small compared
to the number of job seekers, then the labor market is considered slack.2

Now let’s derive some useful objects from the matching function. Suppose this period
begins with 100 vacancies and 10 matches are made. Then the proportion of filled vacan-
cies is 10/100, which is the (Poisson) arrival rate of workers to a firm. More generally, the
arrival rate of workers to firms is m(u, v)/v. Since m(u, v) is homogeneous of degree one,
we can write

1
v

m(u, v) = m
(u

v
, 1
)
= m

(
1
θ

, 1
)
= q(θ).

We can similarly define the (Poisson) arrival rate of jobs to workers as

1
u

m(u, v) = m (1, θ) = θm
(

1
θ

, 1
)
= θq(θ).

Notice that q′(θ) < 0. This is because increasing θ decreases the first argument of
m, and m is increasing in both arguments. Thus, the negative derivative. Intuitively,
this means that when there are more vacancies, job seekers are more likely to find a job

1It was said in lecture to exhibit constant returns to scale, but I find that terminology awkward since we
are not even dealing with returns.

2I find it helpful to think of workers as the “commodity.” If it’s hard to find a worker, then the market is
tight; and vice versa.
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elsewhere. Alternatively, when u becomes smaller, there are fewer workers from which
to match, so q(θ) would become smaller.

On the other hand, d[θq(θ)]/dθ > 0. We can write θq(θ) = m(1, θ). Since m(1, θ)

is increasing in both arguments, the positivity of the derivative is clear. This should be
intuitive. When v becomes larger, there are more job openings posted, and thus workers
will have an easier time landing jobs. Similarly, when u becomes smaller, there are less
people looking at the existing pool of vacancies, and thus it becomes easier for them to
land those jobs.

3.3 Beveridge Curve

We are ultimately dealing with a dynamic model. In a given period, some unemployed
people will become employed and some employed people will become unemployed.
Since there are u unemployed people and the labor force is normalized to 1, it follows
that there are 1− u employed people. Because λ is the probability of losing a job, λ(1− u)
people will lose their jobs in a given period. Similarly, θq(θ)u unemployed people will
find jobs. Therefore in the steady state, we have

λ(1 − u) = θq(θ)u =⇒ u =
λ

λ + θq(θ)
.

This equation actually gives the relationship between v and u, which we call the Bev-
eridge curve, shown in Figure 1.

In particular, you can use the implicit function theorem to show that du/dv < 0. Note
that an increase in matching efficiency will shift the Beveridge curve – for any given num-
ber of vacancies, there will be fewer unemployed people (because workers were matched
more efficiently to the vacancies). Thus, the Beveridge curve will have shifted to the left.

u

v

BC

Figure 1: The Beveridge curve (BC).
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3.4 Value Functions

Some intuition was given for this – perhaps more accurately, a pseudo-derivation – but
I found it rather cumbersome and unhelpful to go through. So, um, I’m not going to go
through it. I’m just going to state it. Suppose r is the fixed real interest rate. Let J denote
the value function of a firm that has a worker, and V the value function of a firm that is
looking for a worker. Then

rV = −pc + q(θ)[J − V]. (1)

The multiplication of V by r is meant to represent discounting. The firm pays the re-
cruitment cost pc, and then we have to account for the arrival rate of the firm finding a
worker, q(θ), at which point the firm would gain the value of having a worker, J, and lose
the value of having to continue searching, V.

Recall that firms with a vacancy do not necessarily have to search for a worker. Also
recall that we are assuming free entry of firms into the labor market. The implication is
that V = 0. This is because if V > 0, then more firms would enter into the labor market;
and if V < 0, then firms would leave the labor market.

We can write the value function of a firm who has a worker as

rJ = p − w − λJ. (2)

The firm gains p in production and loses w in wages. Then we have to account for the
arrival of job destruction, λ, at which point the firm loses the value of having a worker,
J. They do not necessarily gain the value of looking for a new worker V because they
don’t necessarily start searching right away. And even if they did, V = 0 so the equation
wouldn’t really change.

Now look at equation (1). Since V = 0 in equilibrium, we can write

J =
pc

q(θ)
> 0. (3)

This allows us to rewrite equation (2) as

w = p − (r + λ)
pc

q(θ)
. (4)

We call equation (4) the job creation curve, illustrated in Figure 2.
Recall that q′(θ) < 0. An increase in θ thus causes a decrease in q(θ). Thus means the

LHS has a larger negative term. Thus, w will fall. So the JC curve is downward sloping.
For this reason, you can kind of think of it as a demand function.
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u

v

JC

Figure 2: The job creation curve (JC).

Let’s recap. We have three unknowns: u, v, and w. For many purposes, we can cheat a
little a define θ = v/u and think in terms of only two unknowns, but we ultimately want
to solve for u. Thus we will need three equations. So far we only have two: the Beveridge
curve, and the job creation curve:

w = p − (r + λ)
pc

q(θ)
,

u =
λ

λ + θq(θ)
.

We haven’t yet looked at the worker side of the market, so that seems like a good place to
look for that elusive third equation.

3.5 Workers

The value function for an employed worker is

rW = w + λ(U − W). (5)

They receive the wage w, augmented by the arrival rate of being fired λ, in which case
their value function changes from employment W to unemployment U.

The value function for an unemployed worker is

rU = z + θq(θ)(W − U). (6)

They receive the unemployment compensation of z, augmented by the arrival rate of
getting an acceptable job offer θq(θ), in which case they gain the value of being employed
W and lose the value of being unemployed U.
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We will use Nash bargaining to determine wages. Let β ∈ [0, 1] be the bargaining
power of a worker.3 To that end, we are going to be solving

arg max
w

(W − U)β J1−β.

As usual, logs are nicer to deal with. So, let’s instead consider

arg max
w

β log(W − U) + (1 − β) log(J).

Differentiating with respect to w gives

β

W − U
∂[W − U]

∂w
+

1 − β

J
∂J
∂w

:= 0.

First note from a purely economic argument that ∂U/∂w = 0. The value of being
unemployed doesn’t depend on the wage being negotiated. Then from equation (5), we
can write

W =
w + λU

r + λ
=⇒ ∂W

∂w
=

1
r + λ

. (7)

From equation (2), we can write

J =
p − w
r + λ

=⇒ ∂J
∂w

= − 1
r + λ

. (8)

Therefore the first order condition becomes

β

W − U
1

r + λ
=

1 − β

J
1

r + λ
=⇒ βJ = (1 − β)(W − U). (9)

We can substitute using the equations (7) and (8) to get

β

(
p − w
r + λ

)
= (1 − β)

(
w − rU
r + λ

)
=⇒ β (p − w) = (1 − β) (w − rU)

Solving for w, we get
w = βp + (1 − β)rU.

Plug in equation (6) for rU to get

w = βp + (1 − β)z + (1 − β)θq(θ)(W − U).

3“Nash bargaining make sense because any meeting is a match.” I am not sure what this means, but it
was said and seems important.
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Using the first order condition in equation (9), and subsequently equation (3), we can
write

w = βp + (1 − β)z + θq(θ)βJ

= βp + (1 − β)z + βθpc (10)

= z + β(p − z + θpc). (11)

This result is known as the wage curve. Equation (11) gives the intuition behind the
answer solution to w. It is similar to what we have seen in other Nash bargaining prob-
lems. The wage is the worker’s outside offer, namely unemployment benefits, plus their
share β of the total surplus, but also with some new term θpc. This new term reflects the
fact that the search process, which was costly, is over. In practice, equation (10) is easier
to use.

3.6 Equilibrium

By setting the wage curve equal to the job creation curve, we can find an equilibrium with
respect to w and θ. Figure 3 illustrates that existence is guaranteed as long as

p > βp + (1 − β)z =⇒ p > z.

This, as it happens, is an assumption we have been making implicitly anyway. Think
about it: if production is less than the alternative of sitting on your ass and doing nothing,
then no one is going to do anything ever and this model becomes super boring. So yeah,
a solution exists and furthermore is unique. Since we will also know θ∗, we can plug it
into the Beveridge curve to get

u∗ =
λ

λ + θ∗q(θ∗)
.

3.7 Comparative Statics

What happens if z is increased to z′? To answer that, we want to compare the two steady
states. Notice that a change in z will really only affect the wage curve, in particular,
shifting it upwards. As shown in Figure 4, increasing unemployment benefits increases
the wage w and decreases market tightness θ. This is fairly intuitive. People have more
incentive to stay at home when z is increased; therefore they need to be tempted with a
higher wage in order to actually work.
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θ

w

JC

WC

w∗

θ∗

p

βp + (1 − β)z

Figure 3: The unique wage and market tightness in equilibrium.

θ

w

JC

WC0

WC1
p

βp + (1 − β)z

βp + (1 − β)z′
w′

θ′

Figure 4: The effect on the equilibrium of increasing z.

Furthermore, because there is more incentive to not working, we might expect u to
increase, giving a decrease in θ. This can also be shown using the Beveridge curve,

u =
λ

λ + θq(θ)
.

As shown in Figure 5, the term θq(θ) decreases as θ decreases, making the denominator
smaller and thus u larger.
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u

v

BC

θ∗

θ′

v′

u′

Figure 5: An increase in z decreases θ and thus increases u and decreases v.

4 Solution Summary (Bargaining)

i. For Nash bargaining, solve

arg max
s∈S

(s1 − d1)
θ(s2 − d2)

1−θ

where d1, d2 are payoffs in absence of an agreement; s1 and s2 are potential agree-
ment points; θ ∈ [0, 1] is the bargaining power of agent 1; and 1 − θ the bargaining
power of agents 2. Taking a logarithmic transformation is usually quite helpful be-
cause it doesn’t change the argmax yet is easier to work with.

ii. For Kalai bargaining, solve

arg max
s∈S

(s1 − d1) subject to
s1 − d1

θ
=

s2 − d2

1 − θ
.

Usually the constraint alone gives all of the required information.

5 Solution Summary (Mortensen-Pissarides)

i. Use the law of motion of unemployment at the steady state to derive the Beveridge
curve.

ii. Because the value of searching for a worker V = 0 in equilibrium, it follows from
the equation for rV that J = pc/q(θ).
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iii. Then plug that result into the equation for rJ to get the job creation curve,

w = p − (r + λ)
pc

q(θ)
.

iv. Use Nash bargaining to determine wages. Workers will lose U and gain W; firms
will lose V = 0 and gain J; so solve

arg max
w

(W − U)β J1−β.

v. After some ugliness, you’ll get the wage curve

w = z + β(p − z + θpc).

vi. The intersection of the wage curve and the job creation curve give the equilibrium
θ∗ and w∗. Plug θ∗ into the Beveridge curve to solve for u∗.
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