Linear Regression

Definition 1. A linear regression of dependent variable y_{t} on independent variables $\left(x_{t_{1}}, \ldots, x_{t_{k}}\right)$ is

$$
y_{t}=\beta_{1} x_{t_{1}}+\ldots+\beta_{k} x_{t_{k}}+w_{t}
$$

where $\beta_{1}, \ldots, \beta_{k}$ are unknown and fixed regression coefficients and w_{t} is an iid random error process with zero mean and variance σ_{w}^{2}. (Note that often $x_{t}=1$ so that β_{1} is the intercept of the line.)

Let $\mathbf{x} \equiv\left(x_{t_{1}}, \ldots, x_{t_{k}}\right)^{\prime}$ and $\boldsymbol{\beta} \equiv\left(\beta_{1}, \ldots, \beta_{k}\right)^{\prime}$. The regression can then be written more compactly as

$$
y_{t}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}+w_{t}
$$

Definition 2. The error of a regression is defined as

$$
w_{t} \equiv y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t} .
$$

In words, the error is the difference between the actual value and that predicted by the model.

Definition 3. The sum of squared errors (SSE) is

$$
\mathrm{SSE} \equiv \sum_{t=1}^{n} w_{t}^{2}=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{t=1}^{n}\left(y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}\right)^{2},
$$

which gives an overall measure of the difference between the data and the regression line.

Remark 1. A natural way of estimating β coefficients is by choosing values that minimize SSE (the best estimate makes the fewest aggregate errors), which is called ordinary least squares (OLS). Ergo

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{t=1}^{n} w_{t}^{2}=\underset{\boldsymbol{\beta}}{\arg \min } \sum_{t=1}^{n}\left(y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}\right)^{2} .
$$

Remark 2. We have n data points. Let $x_{t k}$ denote the t th observation for the k th regressor. We have the system of n equations

$$
\begin{aligned}
y_{1} & =\beta_{1} x_{11}+\beta_{2} x_{12}+\ldots+\beta_{k} x_{1 k}+w_{1}, \\
y_{2} & =\beta_{1} x_{21}+\beta_{2} x_{22}+\ldots+\beta_{k} x_{2 k}+w_{2}, \\
& \vdots \\
y_{n} & =\beta_{1} x_{n 1}+\beta_{2} x_{n 2}+\ldots+\beta_{k} x_{n k}+w_{n} .
\end{aligned}
$$

This system can be compactly expressed as

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{w},
$$

where

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

$$
\mathbf{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 k} \\
x_{21} & x_{22} & \ldots & x_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n k}
\end{array}\right] .
$$

Remark 3. The sum of squared residuals can be expressed

$$
\operatorname{SSE} \equiv \underbrace{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}}_{1 \times n} \underbrace{(\mathbf{y}-\mathbf{X} \boldsymbol{X})}_{n \times 1} .
$$

When using matrices, it is helpful to consider the dimensionality of the object. SSE is a number, and here we can see that we end up with a 1×1 matrix. If we instead tried $(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}$, we'd end up with an $n \times n$ object and therefore would not have SSE.

Remark 4. The OLS problem becomes

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & \equiv \underset{\boldsymbol{\beta}}{\arg \min } \underbrace{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}}_{1 \times n} \underbrace{(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})}_{n \times 1} \\
& =\underset{\boldsymbol{\beta}}{\arg \min } \mathbf{y}^{\prime} \mathbf{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} .
\end{aligned}
$$

which gives the (1×1) objective function. Differentiation with respect to $\boldsymbol{\beta}$ and allows us to find the critical values that minimize SSE. But differentiating with respect to matrices requires our attention.

Matrix Differentiation

Definition 4. For column vector y of length n and column vector \mathbf{x} of length k, we define

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \equiv\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{k}}
\end{array}\right]
$$

Remark 5. The following proofs will assume that $n=k=$ 2 just to make things easier. Therefore

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] .
$$

Showing more general results is a straightforward exten-
sion of what follows.
Proposition 1. For \mathbf{x}, \mathbf{y}, and \mathbf{A} as previously defined,

$$
\frac{d}{d \mathbf{x}}\left[\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}\right]=\mathbf{y}^{\prime} \mathbf{A}
$$

Proof. Expanding $\mathbf{y}^{\prime} \mathbf{A x}$ yields

$$
\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}=y_{1} a_{11} x_{1}+y_{1} a_{12} x_{2}+y_{2} a_{21} x_{1}+y_{2} a_{22} x_{2}
$$

Because this object has only one row, we know from appealing to definition (4) that our final object will be a row vector of $k=2$ derivatives, specifically

$$
\begin{aligned}
& \frac{\partial \mathbf{y}^{\prime} \mathbf{A} \mathbf{x}}{\partial x_{1}}=y_{1} a_{11}+y_{2} a_{21} \\
& \frac{\partial \mathbf{y}^{\prime} \mathbf{A} \mathbf{x}}{\partial x_{2}}=y_{1} a_{12}+y_{2} a_{22}
\end{aligned}
$$

Therefore with matrices, we have

$$
\begin{aligned}
& \frac{d}{d \mathbf{x}}\left[\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}\right]=\left[y_{1} a_{11}+y_{2} a_{21}\right. \\
&\left.y_{1} a_{12}+y_{2} a_{22}\right] \\
&=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
&=\mathbf{y}^{\prime} \mathbf{A} .
\end{aligned}
$$

Proposition 2. For \mathbf{x}, \mathbf{y}, and \mathbf{A} as previously defined,

$$
\frac{d}{d \mathbf{y}}\left[\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}\right]=\mathbf{x}^{\prime} \mathbf{A}^{\prime}
$$

Proof. Expanding $\mathbf{y}^{\prime} \mathbf{A x}$ yields

$$
\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}=y_{1} a_{11} x_{1}+y_{1} a_{12} x_{2}+y_{2} a_{21} x_{1}+y_{2} a_{22} x_{2}
$$

Now we differente with respect to y_{1} and y_{2}, giving

$$
\begin{aligned}
\frac{\partial \mathbf{y}^{\prime} \mathbf{A} \mathbf{x}}{\partial y_{1}} & =a_{11} x_{1}+a_{12} x_{2} \\
\frac{\partial \mathbf{y}^{\prime} \mathbf{A} \mathbf{x}}{\partial y_{2}} & =a_{21} x_{1}+a_{22} x_{2}
\end{aligned}
$$

Therefore with matrices, we have

$$
\begin{aligned}
\frac{d}{d \mathbf{x}}\left[\mathbf{y}^{\prime} \mathbf{A} \mathbf{x}\right] & =\left[\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2} & a_{21} x_{1}+a_{22} x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right] \\
& =\mathbf{x}^{\prime} \mathbf{A}^{\prime}
\end{aligned}
$$

Proposition 3. For \mathbf{x}, \mathbf{y}, and \mathbf{A} as previously defined,

$$
\frac{d}{d \mathbf{x}}\left[\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}\right]=\mathbf{x}^{\prime}\left(\mathbf{A}+\mathbf{A}^{\prime}\right)
$$

Proof. Expanding $\mathbf{x}^{\prime} \mathbf{A x}$ yields

$$
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=x_{1}^{2} a_{11}+x_{1} x_{2} a_{12}+x_{1} x_{2} a_{21}+x_{2}^{2} a_{22}
$$

Differentiate with respect to x_{1} and x_{2}, which gives

$$
\begin{aligned}
& \frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial x_{1}}=2 x_{1} a_{11}+x_{2}\left(a_{12}+a_{21}\right) \\
& \frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial x_{2}}=x_{1}\left(a_{12}+a_{21}\right)+2 x_{2} a_{22}
\end{aligned}
$$

Therefore with matrices, we have $d\left[\mathbf{x}^{\prime} \mathbf{A x}\right] / d \mathbf{x}$ equal to

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 x_{1} a_{11}+x_{2}\left(a_{12}+a_{21}\right) & x_{1}\left(a_{12}+a_{21}\right)+2 x_{2} a_{22}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
2 a_{11} & a_{12}+a_{21} \\
a_{12}+a_{21} & 2 a_{22}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]\right) } \\
= & \mathbf{x}^{\prime}\left(\mathbf{A}+\mathbf{A}^{\prime}\right) .
\end{aligned}
$$

OLS Solution

Remark 6. Keeping in mind that $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$, the preceding properties of matrix differentiation can be applied respectively to yield

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}}\left[-\mathbf{y}^{\prime} \mathbf{X} \boldsymbol{\beta}\right] & =-\mathbf{y}^{\prime} \mathbf{X} \\
\frac{d}{d \boldsymbol{\beta}}\left[-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{y}\right] & =-\mathbf{y}^{\prime} \mathbf{X} \\
\frac{d}{d \boldsymbol{\beta}}\left[\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right] & =\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}+\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{\prime}\right)=2 \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X}
\end{aligned}
$$

Remark 7. Ergo the first-order condition (after a transpose) is

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}
$$

Assuming that $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular, we can premultiply both sides by $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ to get

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Note that because \mathbf{X} is not in general a square matrix, we cannot simplify further by distributing the inverse.

Remark 8. The minimized sum of squared errors can therefore be expressed as

$$
\mathrm{SSE}^{*}=\mathbf{y}^{\prime} \mathbf{y}-\mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Proposition 4. Supposing that the model is correctly specified and the error term is uncorrelated with \mathbf{X} (i.e. zero conditional mean), the OLS estimates will be unbiased, i.e. $E[\hat{\boldsymbol{\beta}}]=\boldsymbol{\beta}$.

Proof. This is because

$$
\begin{aligned}
E[\hat{\boldsymbol{\beta}} \mid \mathbf{X}] & =E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \mid \mathbf{X}\right] \\
& =E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{w}) \mid \mathbf{X}\right] \\
& \left.=\boldsymbol{\beta}+E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{w}\right) \mid \mathbf{X}\right] \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\mathbf{w} \mid \mathbf{X}] \\
& =\boldsymbol{\beta}
\end{aligned}
$$

recalling that $E[\mathbf{w} \mid \mathbf{X}]=0$ as the zero conditional mean assumption. Since $E[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\boldsymbol{\beta}$ clearly does not depend on X, we conclude that

$$
E[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=E[\hat{\boldsymbol{\beta}}]=\boldsymbol{\beta}
$$

and unbiasedness is established.
Remark 9. If errors are homoskedastic and independent, then OLS estimates will the best linear unbiased estimators (BLUE).

Proposition 5. The variance-covariance matrix of $\hat{\boldsymbol{\beta}}$ is given by

$$
\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma_{w}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Proof. Because $E[\hat{\boldsymbol{\beta}}]=\boldsymbol{\beta}$, covariance directly gives

$$
\operatorname{Cov}(\hat{\boldsymbol{\beta}})=E[\underbrace{(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}_{k \times 1}(\underbrace{\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}}_{1 \times k}]
$$

Note the dimensionality: we have k regressors, so we want a $k \times k$ covariance matrix. Let's use $\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+$ $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{w}$ to instead write

$$
\begin{aligned}
\operatorname{Cov}(\hat{\boldsymbol{\beta}}) & \left.=E\left[\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{w}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \mathbf{X}^{\prime} \mathbf{w}\right)^{\prime}\right] \\
& =E\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{w} \mathbf{w}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]
\end{aligned}
$$

Treating \mathbf{X} as data (i.e. a bunch of non-stochastic numbers), we can write

$$
\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left[\mathbf{w} \mathbf{w}^{\prime}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

The error w_{t} has zero mean. Ergo the variance of error is $\operatorname{Var}(\mathbf{w})=E\left[\mathbf{w} \mathbf{w}^{\prime}\right]$, which looks like

$$
E\left[\begin{array}{cccc}
w_{1}^{2} & w_{1} w_{2} & \ldots & w_{1} w_{n} \\
w_{2} w_{1} & w_{2}^{2} & \ldots & w_{2} w_{n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n} w_{1} & w_{n} w_{2} & \ldots & w_{n}^{2}
\end{array}\right]
$$

Because errors are uncorrelated, it follows that $E\left[w_{s} w_{t}\right]=$ 0 when $s \neq t$, and $E\left[w_{t}^{2}\right]=\sigma_{w}^{2}$. Thus we can write simply $E\left[\mathbf{w w}^{\prime}\right]=\sigma_{w}^{2} \mathbf{I}_{n}$. Therefore

$$
\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma_{w}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Remark 10. The error variance σ_{w}^{2} has unbiased estimator given by the mean squared error (MSE), i.e.,

$$
s_{w}^{2} \equiv \mathrm{MSE} \equiv \frac{\mathrm{SSE}}{n-k}
$$

Remark 11. Let $\mathbf{C} \equiv\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and $c_{i j}$ be the i, j th element of \mathbf{C}. Define the \boldsymbol{t}-statistic for β_{i} to be

$$
t_{n-k} \equiv \frac{\hat{\beta}_{i}-\beta_{i}}{s_{w} \sqrt{c_{i i}}}
$$

If w_{t} has normal distribution, then $t_{n-k} \sim t(n-k)$ distribution. If w_{t} does not have normal distribution, then the result is approximately true for large n.

Remark 12. We can jointly test the significance of several regressors by comparing the SSE of the full unrestricted model, call it $\mathrm{SSE}_{\mathrm{u}}$; to the SSE of a restricted model with q fewer regressors, call it SSR_{r}; according to the \boldsymbol{F}-statistic defined as

$$
F_{q, n-k} \equiv \frac{\left(\mathrm{SSE}_{\mathrm{r}}-\mathrm{SSE}_{\mathrm{u}}\right) / q}{\mathrm{SSE}_{\mathrm{u}} /(n-k)}
$$

because $F_{q, n-k} \sim F(q, n-k)$.
Remark 13. It can be shown that the maximum likelihood estimator for the variance of a regression with k variables is

$$
\hat{\sigma}_{k}^{2}=\frac{\mathrm{SSE}_{k}}{n}
$$

Note that because that every time an additional regressor is thrown in, SSE will (weakly) decrease, and this is true even if the additional regressor is junk. So a simple reduction in errors is not a good measure of whether an additional regressor is useful.

Instead, we might add another element: adding a regressor will reduce SSE, but does it reduce SSE by enough to reasonably conclude that it was helpful?

