
Time Series Cheat Sheet Part 2 - Basic Regression

Linear Regression

Definition 1. A linear regression of dependent variable
yt on independent variables (xt1 , . . . , xtk ) is

yt = β1xt1 + . . . + βkxtk + wt,

where β1, . . . , βk are unknown and fixed regression coef-
ficients and wt is an iid random error process with zero
mean and variance σ2

w. (Note that often xt = 1 so that β1
is the intercept of the line.)

Let x ≡ (xt1 , . . . , xtk )
′ and β ≡ (β1, . . . , βk)

′. The regres-
sion can then be written more compactly as

yt = β′xt + wt.

Definition 2. The error of a regression is defined as

wt ≡ yt − β′xt.

In words, the error is the difference between the actual
value and that predicted by the model.

Definition 3. The sum of squared errors (SSE) is

SSE ≡
n

∑
t=1

w2
t = arg min

β

n

∑
t=1

(yt − β′xt)
2,

which gives an overall measure of the difference between
the data and the regression line.

Remark 1. A natural way of estimating β coefficients is
by choosing values that minimize SSE (the best estimate
makes the fewest aggregate errors), which is called ordi-
nary least squares (OLS). Ergo

β̂ = arg min
β

n

∑
t=1

w2
t = arg min

β

n

∑
t=1

(yt − β′xt)
2.

Remark 2. We have n data points. Let xtk denote the tth
observation for the kth regressor. We have the system of n
equations

y1 = β1x11 + β2x12 + . . . + βkx1k + w1,

y2 = β1x21 + β2x22 + . . . + βkx2k + w2,

...

yn = β1xn1 + β2xn2 + . . . + βkxnk + wn.

This system can be compactly expressed as

y = Xβ+ w,

where

y =


y1
y2
...

yn

 , w =


w1
w2
...

wn

 , β =


β1
β2
...

βk

 ,

X =


x11 x12 . . . x1k
x21 x22 . . . x2k

...
...

. . .
...

xn1 xn2 . . . xnk

 .

Remark 3. The sum of squared residuals can be expressed

SSE ≡ (y − Xβ)′︸ ︷︷ ︸
1×n

(y − Xβ)︸ ︷︷ ︸
n×1

.

When using matrices, it is helpful to consider the dimen-
sionality of the object. SSE is a number, and here we can
see that we end up with a 1× 1 matrix. If we instead tried
(y − Xβ)(y − Xβ)′, we’d end up with an n × n object and
therefore would not have SSE.

Remark 4. The OLS problem becomes

β̂ ≡ arg min
β

(y − Xβ)′︸ ︷︷ ︸
1×n

(y − Xβ)︸ ︷︷ ︸
n×1

= arg min
β

y′y − β′X′y − y′Xβ+ β′X′Xβ.

which gives the (1 × 1) objective function. Differentiation
with respect to β and allows us to find the critical values
that minimize SSE. But differentiating with respect to ma-
trices requires our attention.

Matrix Differentiation

Definition 4. For column vector y of length n and column
vector x of length k, we define

∂y
∂x

≡


∂y1
∂x1

. . . ∂y1
∂xk

...
. . .

...
∂yn
∂x1

. . . ∂yn
∂xk

 .

Remark 5. The following proofs will assume that n = k =

2 just to make things easier. Therefore

y =

[
y1
y2

]
, x =

[
x1
x2

]
, A =

[
a11 a12
a21 a22

]
.

Showing more general results is a straightforward exten-
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sion of what follows.

Proposition 1. For x, y, and A as previously defined,

d
dx

[y′Ax] = y′A.

Proof. Expanding y′Ax yields

y′Ax = y1a11x1 + y1a12x2 + y2a21x1 + y2a22x2.

Because this object has only one row, we know from ap-
pealing to definition (4) that our final object will be a row
vector of k = 2 derivatives, specifically

∂y′Ax
∂x1

= y1a11 + y2a21,

∂y′Ax
∂x2

= y1a12 + y2a22.

Therefore with matrices, we have

d
dx

[y′Ax] =
[
y1a11 + y2a21 y1a12 + y2a22

]
=

[
y1 y2

] [a11 a12
a21 a22

]
= y′A.

Proposition 2. For x, y, and A as previously defined,

d
dy

[y′Ax] = x′A′

Proof. Expanding y′Ax yields

y′Ax = y1a11x1 + y1a12x2 + y2a21x1 + y2a22x2.

Now we differente with respect to y1 and y2, giving

∂y′Ax
∂y1

= a11x1 + a12x2,

∂y′Ax
∂y2

= a21x1 + a22x2.

Therefore with matrices, we have

d
dx

[y′Ax] =
[
a11x1 + a12x2 a21x1 + a22x2

]
=

[
x1 x2

] [a11 a21
a12 a22

]
= x′A′

Proposition 3. For x, y, and A as previously defined,

d
dx

[x′Ax] = x′(A + A′).

Proof. Expanding x′Ax yields

x′Ax = x2
1a11 + x1x2a12 + x1x2a21 + x2

2a22.

Differentiate with respect to x1 and x2, which gives

∂x′Ax
∂x1

= 2x1a11 + x2(a12 + a21)

∂x′Ax
∂x2

= x1(a12 + a21) + 2x2a22.

Therefore with matrices, we have d[x′Ax]/dx equal to[
2x1a11 + x2(a12 + a21) x1(a12 + a21) + 2x2a22

]
=

[
x1 x2

] [ 2a11 a12 + a21
a12 + a21 2a22

]

=
[
x1 x2

] ([
a11 a12
a21 a22

]
+

[
a11 a21
a12 a22

])
= x′(A + A′).

OLS Solution

Remark 6. Keeping in mind that (AB)′ = B′A′, the pre-
ceding properties of matrix differentiation can be applied
respectively to yield

d
dβ

[−y′Xβ] = −y′X,

d
dβ

[−β′X′y] = −y′X,

d
dβ

[β′X′Xβ] = β′(X′X + [X′X]′) = 2β′X′X.

Remark 7. Ergo the first-order condition (after a trans-
pose) is

(X′X)β̂ = X′y.

Assuming that X′X is nonsingular, we can premultiply
both sides by (X′X)−1 to get

β̂ = (X′X)−1X′y.

Note that because X is not in general a square matrix, we
cannot simplify further by distributing the inverse.
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Remark 8. The minimized sum of squared errors can
therefore be expressed as

SSE∗ = y′y − y′X(X′X)−1X′y.

Proposition 4. Supposing that the model is correctly specified
and the error term is uncorrelated with X (i.e. zero conditional
mean), the OLS estimates will be unbiased, i.e. E[β̂] = β.

Proof. This is because

E[β̂|X] = E[(X′X)−1X′y|X]

= E[(X′X)−1X′(Xβ+ w)|X]

= β+ E[(X′X)−1X′w)|X]

= β+ (X′X)−1X′E[w|X]

= β,

recalling that E[w|X] = 0 as the zero conditional mean
assumption. Since E[β̂|X] = β clearly does not depend
on X, we conclude that

E[β̂|X] = E[β̂] = β

and unbiasedness is established.

Remark 9. If errors are homoskedastic and independent,
then OLS estimates will the best linear unbiased estima-
tors (BLUE).

Proposition 5. The variance-covariance matrix of β̂ is given
by

Var(β̂) = σ2
w(X

′X)−1.

Proof. Because E[β̂] = β, covariance directly gives

Cov(β̂) = E[(β̂− β)︸ ︷︷ ︸
k×1

(β̂− β)′︸ ︷︷ ︸
1×k

].

Note the dimensionality: we have k regressors, so we
want a k × k covariance matrix. Let’s use β̂ = β +

(X′X)−1X′w to instead write

Cov(β̂) = E
[(
(X′X)−1X′w

)(
(X′X)−1)X′w

)′]
= E

[
(X′X)−1X′ww′X(X′X)−1].

Treating X as data (i.e. a bunch of non-stochastic num-
bers), we can write

Cov(β̂) = (X′X)−1X′E
[
ww′]X(X′X)−1.

The error wt has zero mean. Ergo the variance of error is
Var(w) = E[ww′], which looks like

E


w2

1 w1w2 . . . w1wn
w2w1 w2

2 . . . w2wn
...

...
. . .

...
wnw1 wnw2 . . . w2

n

 .

Because errors are uncorrelated, it follows that E[wswt] =

0 when s ̸= t, and E[w2
t ] = σ2

w. Thus we can write simply
E[ww′] = σ2

wIn. Therefore

Cov(β̂) = σ2
w(X

′X)−1

Remark 10. The error variance σ2
w has unbiased estimator

given by the mean squared error (MSE), i.e.,

s2
w ≡ MSE ≡ SSE

n − k
.

Remark 11. Let C ≡ (X′X)−1 and cij be the i, jth element
of C. Define the t-statistic for βi to be

tn−k ≡
β̂i − βi
sw
√

cii
.

If wt has normal distribution, then tn−k ∼ t(n − k) distri-
bution. If wt does not have normal distribution, then the
result is approximately true for large n.

Remark 12. We can jointly test the significance of several
regressors by comparing the SSE of the full unrestricted
model, call it SSEu; to the SSE of a restricted model with q
fewer regressors, call it SSRr; according to the F -statistic
defined as

Fq,n−k ≡
(SSEr − SSEu)/q

SSEu/(n − k)
,

because Fq,n−k ∼ F(q, n − k).

Remark 13. It can be shown that the maximum likelihood
estimator for the variance of a regression with k variables
is

σ̂2
k =

SSEk
n

Note that because that every time an additional regres-
sor is thrown in, SSE will (weakly) decrease, and this is
true even if the additional regressor is junk. So a simple
reduction in errors is not a good measure of whether an
additional regressor is useful.

Instead, we might add another element: adding a re-
gressor will reduce SSE, but does it reduce SSE by enough
to reasonably conclude that it was helpful?
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